计算机科学 ›› 2024, Vol. 51 ›› Issue (9): 147-154.doi: 10.11896/jsjkx.230800003

• 计算机图形学&多媒体 • 上一篇    下一篇

面向文本识别的小样本阴影消除方法

王笳辉, 彭光灵, 段亮, 袁国武, 岳昆   

  1. 云南大学信息学院 昆明 650500
    云南省智能系统与计算重点实验室 昆明 650500
  • 收稿日期:2023-07-31 修回日期:2023-11-23 出版日期:2024-09-15 发布日期:2024-09-10
  • 通讯作者: 段亮(duanl@ynu.edu.cn)
  • 作者简介:(wjh@ynu.edu.cn)
  • 基金资助:
    国家自然科学基金(62002311,U23A20298);云南省重点实验室项目(202205AG070003);云南省重大科技专项计划项目 (202202AD080001);云南省基础研究计划项目(202201AT070394)

Few-shot Shadow Removal Method for Text Recognition

WANG Jiahui, PENG Guangling, DUAN Liang, YUAN Guowu, YUE Kun   

  1. School of Information Science and Engineering,Yunnan University,Kunming 650500,China
    Yunnan Key Laboratory of Intelligent Systems and Computing,Kunming 650500,China
  • Received:2023-07-31 Revised:2023-11-23 Online:2024-09-15 Published:2024-09-10
  • About author:WANG Jiahui,born in 1996,Ph.D.His main research interests include machine learning and knowledge engineering.
    DUAN Liang,born in 1986,Ph.D,associate professor,master supervisor.His main research interests include unsupervised machine learning and know-ledge engineering.
  • Supported by:
    National Natural Science Foundation of China(62002311,U23A20298),Foundation of Key Laboratory of Yunnan Province (202205AG070003),Major Science and Technology Special Foundation of Yunnan Province(202202AD080001) and Basic Research Project of Yunnan Province(202201AT070394).

摘要: 阴影消除是计算机视觉领域中面对阴影场景的重要任务,旨在检测和消除图像中的阴影区域。由于图像编辑技术受到阴影图像质量的制约,现有方法利用其他任务中的知识和阴影特性来获得更加有效的特征向量,从而实现阴影消除。在带有文本内容的阴影图像中,由于文本颜色和形状等特征不同于前景和背景,因此可能将文本错误地检测为阴影的一部分进而导致错误的阴影消除结果。针对该问题,提出了一种面向文本识别的小样本阴影消除方法。在小样本目标检测基础框架模型中,利用被错误识别为阴影的文本特征生成基类数据和新类数据,增强对该类文本的特征学习;在部分检测框合并算法中,利用文本本身长宽比多样化、变化大的特性,以多个约束为前提合并结构相关性较强的检测框,实现对目标的正确框定。建立在真实数据与合成数据上的实验结果验证了所提方法的有效性。

关键词: 文本识别, 阴影消除, 阴影检测, 小样本学习, 目标检测

Abstract: Shadow removal is an important task in the field of computer vision,with the goal of detecting and removing shaded regions from shadow regions in images.As image editing techniques are constrained by the quality of shaded images,existing me-thods exploit the knowledge from other tasks and the properties of shadows to obtain more effective feature vectors for shadow removal.Since the color and shape features of the text differ from the foreground and background in the shaded images,the text may be incorrectly detected as part of the shadows to generate incorrect results.To address this problem,a few-shot shadow removal method for text recognition is proposed.First,the features of the text incorrectly identified as shadows are used to produce base class data and new class data to enhance feature learning of such text in the infrastructure part of the few-shot target detection model.Second,the text itself is used to merge structurally relevant detection frames with multiple constraints to fix the objects correctly in the enhancement part of the detection frame merging algorithm.Experimental results validate the effectiveness of the proposed method on real and synthetic datasets.

Key words: Text recognition, Shadow removal, Shadow detection, Few-shot learning, Object detection

中图分类号: 

  • TP391
[1]BAKO S,DARABI S,SHECHTMAN E,et al.Removing sha-dows from images of documents [C]//The 13th Asian Confe-rence on Computer Vision.2016:173-183.
[2]LIN Y H,CHEN W C,CHUANG Y.BEDSR-Net:A DeepShadow Removal Network from a Single Document Image [C]//IEEE Conference on Computer Vision and Pattern Recognition.2020:12902-12911.
[3]EVERINGHAM M,VAN G,WILLIAMS C,et al.The PASCAL Visual Object Classes Challenge 2007(VOC2007) Results [EB/OL].http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.2007.
[4]WANG Y P,ZHAO X,LI Y,el al.Densely cascaded shadow detection network via deeply supervised parallel fusion [C]//International Joint Conference on Artificial Intelligence.2018:1007-1013.
[5]VICENTE T,HOU L,YU C,et al.Large-scale training of sha-dow detectors with noisily-annotated shadow examples [C]//European Conference on Computer Vision.2016:816-832.
[6]HU X W,FU C W,ZHU L,et al.Direction-Aware Spatial Context Features for Shadow Detection [C]//IEEE Conference on Computer Vision and Pattern Recognition.2018:7454-7462.
[7]WANG X,HUANG T,GONZALEZ J,et al.Frustratingly Sim-ple Few-Shot Object Detection [C]//International Conference on Machine Learning.2020:9919-9928.
[8]YANG Q,TAN K,AHUJA N.Shadow removal using bilateral filtering [J].IEEE Transactions on Image Processing,2012,21(10):4361-4368.
[9]ZHANG L,ANDY M,TAN C.Removing shading distortions in camera-based document images using inpainting and surface fitting with radial basis functions [C]//International Conference on Document Analysis and Recognition.2007:984-988.
[10]TSOI Y,BROWN M.Geometric and Shading Correction forImages of Printed Materials a Unified Approach Using Boundary[C]//IEEE Conference on Computer Vision and Pattern Recognition,2004:240-246.
[11]JUNG S,ABUL H,KIM C.Water-filling:An efficient algorithm for digitized document shadow removal [C]//Asian Conference on Computer Vision.2018:398-414.
[12]KLIGLER N,KATZ S,AYELLET T.Document enhancement using visibility detection [C]//IEEE Conference on Computer Vision and Pattern Recognition.2018:2374-2382.
[13]OLIVEIRA D,LINS R,GABRIEL F.Shading removal of illustrated documents [C]//International Conference on Image Analysis and Recognition.2013:308-317.
[14]FINLAYSON D,HORDLEY S D,LU C,et al.On the removal of shadows from images [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(1):59-68.
[15]TIAN J D,QI X J,QU L Q,et al.New spectrum ratio properties and features for shadow detection [J].Pattern Recognition,2016,51(3):85-96.
[16]GUO R Q,DAI Q Y,HOIEM D.Single-image shadow detection and removal using paired regions [C]//IEEE Conference on Computer Vision and Pattern Recognition.2011:2033-2040.
[17]HUANG X,HUA G,TUMBLIN J,et al.What characterizes ashadow boundary under the sun and sky? [C]//IEEE International Conference on Computer Vision.2011:898-905.
[18]VICENTE Y,TOMAS F,HOAI M,et al.Leave-one-out kerneloptimization for shadow detection [C]//IEEE International Conference on Computer Vision.2015:3388-3396.
[19]ZHU J J,SAMUEL K,MASOOD S,et al.Learning to recognize shadows in monochromatic natural images [C]//IEEE Confe-rence on Computer Vision and Pattern Recognition.2010:223-230.
[20]KHAN S,BENNAMOUN M,SOHEL F,et al.Automatic feature learning for robust shadow detection[C]//IEEE Confe-rence on Computer Vision and Pattern Recognition.2014:1939-1946.
[21]SHEN L,CHUA T,LEMAN K.Shadow optimization fromstructured deep edge detection [C]//IEEE Conference on Computer Vision and Pattern Recognition.2015:2067-2074.
[22]VICENTE T,HOU L,YU C,et al.Large-scale training of sha-dow detectors with noisily-annotated shadow examples [C]//European Conference on Computer Vision.2016:816-832.
[23]SHI H,ZHANG L.Image Shadow Removal Algorithm Based on Generative Adversarial Network [J].Computer Science,2021,48(6):145-152.
[24]HU X W,FU C W,ZHU L,et al.Direction-aware spatial context features for shadow detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.2018:7454-7462.
[25]WANG J F,LI X,YANG J.Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal [C]//IEEE Conference on Computer Vision and Pattern Recognition.2018:1788-1797.
[26]ZHU Y,HUANG J,FU X,et al.Bijective mapping network for shadow removal [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5627-5636.
[27]ZHU Y,XIAO Z,FANG Y,et al.Efficient model-driven network for shadow removal [C]//AAAI Conference on Artificial Intelligence.2022:3635-3643.
[28]LUO W,XIE X,Deng K,et al.Learning Shadow Removal from Unpaired Samples via Reciprocal Learning [J].IEEE Transactions on Image Processing,2023,32:3455-3464.
[29]REN S,HE K,ROSS B,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks [C]//Neural Information Processing Systems.2015:91-99.
[30]HUANG W L,LIN Z,YANG J C,et al.Text localization in na-tural images using stroke feature transform and text covariance descriptors [C]//IEEE International Conference on Computer Vision,2013:1241-1248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!