计算机科学 ›› 2024, Vol. 51 ›› Issue (9): 273-282.doi: 10.11896/jsjkx.230700149
李哲1, 刘奕阳1, 王可1,2,3, 杨杰1, 李亚飞1,2,3, 徐明亮1,2,3
LI Zhe1, LIU Yiyang1, WANG Ke1,2,3, YANG Jie1, LI Yafei1,2,3, XU Mingliang1,2,3
摘要: 航空母舰舰载机着舰过程中应沿相对固定的航迹下滑,以保证触舰点位于舰艉拦阻系统所在的区域,因此舰载机航迹是着舰信号官进行指挥决策的重要依据之一。舰载机航迹实时预测有助于着舰信号官判断着舰作业发展态势,及时形成正确的航迹纠偏引导指令。为此,提出一种基于分阶段自编码器与注意力机制的着舰航迹实时预测模型。第一阶段采用降噪自编码器对历史航迹数据进行特征提取;第二阶段基于长短期记忆网络构建时序自编码器,同时引入注意力机制对不同时刻的编码器输出分配不同的权重,自适应学习其对最终预测结果的影响强度。通过仿真实验将所提模型与6种基线模型进行对比,结果表明,所提模型的综合性能优于基线模型,能够满足着舰航迹实时准确预测的应用需求。
中图分类号:
[1]WANG K,XU M L,LI Y F,et al.A Robust Learning Model for Deck Motion Prediction of Aircraft Carrier[J/OL].https://doi.org/10.16383/j.aas.c210664. [2]LIU G,YAN S,LI H,et al.Aviation Support Technology Deve-lopment for Foreign Aircraft Carrier[J].Aeronautical Science & Technology,2020,31(2):1-11. [3]ZHU Q D,ZHANG Z,ZHANG W.Safe Takeoff and Landing Technology for Carrier Aircraft[M].Harbin:Harbin Enginee-ring University Press,2016. [4]LIANG Y.Testing an Intelligent Landing Signals Officer(LSO) Agent for Conducting Pilot Training in a Helicopter Deck Lan-ding Simulator[C]//2005 International Conference on Neural Networks and Brain.Beijing,China:IEEE,2005:204-207. [5]HUANG X,HONG G X.Modeling and Simulation Research on Error Origin of Fresnel Lens Optical Landing System[J].Flight Dynamics,2010,28(1):92-96. [6]XU X Y.A Comprehensive Research on the Assessment Approaches of the Shipboard Aircraft's Landing Posture[D].Wuhan:Huazhong University of Science and Technology,2021. [7]HOCHREITER S,SCHMIDHUBER J.Long Short-Term Me-mory[J].Neural Computation,1997,9(8):1735-1780. [8]RUSH A M,CHOPRA S,WESTON J.A Neural AttentionModel for Abstractive Sentence Summarization[C]//Procee-dings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:379-389. [9]BAHDANAU D,CHO K,BENGIO Y.Neural Machine Translation by Jointly Learning to Align and Translate[J].arXiv:1409.0473,2014. [10]HE Y Q.Crowd Counting Based on Convolutional Neural Net-work[D].Hefei:University of Science and Technology of China,2023. [11]LIN Y,YANG B,ZHANG J,et al.Approach for 4-D Trajectory Management Based on HMM and Trajectory Similarity[J].Journal of Marine Science and Technology,2019,27(3):246-256. [12]TASTAMBEKOV K,PUECHMOREL S,DELAHAYE D,et al.Aircraft Trajectory Forecasting Using Local Functional Regression in Sobolev Space[J].Transportation Research Part C Emerging Technologies,2014,39:1-22. [13]SHI Z,XU M,PAN Q,et al.LSTM-based Flight TrajectoryPrediction[C]//2018 International Joint Conference on Neural Networks(IJCNN).Rio de Janeiro,Brazil:IEEE,2018:1-8. [14]WU Z,TIAN S,MA L.A 4D Trajectory Prediction Model Based on the BP Neural Network[J].Journal of Intelligent Systems,2020,29(1):1545-1557. [15]BAKLACIOGLU T,CAVCAR M.Aero-propulsive Modellingfor Climb and Descent Trajectory Prediction of Transport Aircraft Using Genetic Algorithms[J].Aeronautical Journal,2014,118(1199):65-79. [16]ZHANG T,GUO J L,XU X M,et al.Air Combat Trajectory Prediction of a Fighter Based on Elman Neural Network[J].Flight Dynamics,2018,36(5):86-91. [17]ZHANG W,ZHU Q D,ZHANG Z,et al.An Online Prediction Method for Short Term Track of Shipborne Aircraft Landing:Chinese Patent,CN106339355B[P].2019-01-11.https://pss-system.cponline.cnipa.gov.cn/conventionalSearch. [18]ZHANG W,ZHANG Z.Carrier Landing Command Decision-making Algorithm Based on Trajectory Prediction[J].Journal of Harbin Engineering University,2019,40(1):181-188. [19]SUTSKEVER I,VINYALS O,LE Q V.Sequence to Sequence Learning with Neural Networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.2014:3104-3112. [20]EUROCONTROL EXPERIMENTAL CENTER.User Manualfor the Base of Aircraft Data(BADA) Revision 3.12[R].EEC Technical Report No.12/04,2013. [21]WEITZ L A,SMITH E C.Derivation of a Point-Mass Aircraft Model used for Fast-Time Simulation[R].MA,USA:MITRE Technical Report,2015. [22]ZAMMIT B,ZAMMIT-MANGION D.Accuracy Considerations of a Simple Aircraft Trajectory Prediction Model for Idle Thrust Descents[C]//2013 IEEE/AIAA 32nd Digital Avionics Systems Conference(DASC).East Syracuse,NY,USA,2013:1E2-1-1E2-16. [23]WANG Z,LIANG M,DELAHAYE D.Short-term 4D Trajectory Prediction Using Machine Learning Methods[C]//7th SESAR Innovation Days.Belgrade,Serbia,2017:1-9. [24]VINCENT P,LAROCHELLE H,BENGIO Y,et al.Extracting and Composing Robust Features with Denoising Autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning(ICML '08).New York,NY,USA:Association for Computing Machinery,2018:1096-1103. [25]ZHANG X,MAHADEVAN S.Bayesian Neural Networks for Flight Trajectory Prediction and Safety Assessment[J].Decision Support Systems,2020,131:113246. [26]YAO Q,SONG D,CHENG H,et al.A Dual-stage Attention-based Recurrent Neural Network for Time Series Prediction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence(IJCAI'17).Melbourne,Australia:AAAI Press,2017:2627-2633. [27]GRAVES A,FERNANDEZ S,SCHMIDHUBER J.Bidirectional LSTM Networks for Improved Phoneme Classification and Re-cognition[C]//Proceedings of the 15th International Conference on Artificial Neural Networks:Formal Models and Their Applications-Volume Part II(ICANN'05).Berlin,Heidelberg:Springer-Verlag,2005:799-804. [28]LITTLE W A.The Existence of Persistent States in the Brain[J].Mathematical Biosciences,1974,19(1/2):101-120. [29]CHO K,MERRIENBOER B V,GULCEHRE C,et al.Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation[J].arXiv:1406.1078,2014. [30]SHI L,WANG L,LONG C,et al.SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory Prediction[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2021:8990-8999. [31]MARCHETTI F,BECATTINI F,SEIDENARI,et al.Mantra:Memory Augmented Networks for Multiple Trajectory Prediction[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2020:7143-7152. [32]ZHONG G,ZHANG H,ZHOU J,et al.Short-Term 4D Trajectory Prediction for UAV Based on Spatio-Temporal Trajectory Clustering[J].IEEE Access,2022,10:93362-93380. [33]WANG K,LIU Y Y,YANG J,et al.Arrested Landing State Recognition of Carrier-Based Aircraft Based on Adaptive Feature Enhancement and Fusion[J/OL].https://doi.org/10.16183/j.cnki.jsjtu.2023.263. [34]SHERMAN W L.Generalization and Refinement of an Automatic Landing System Capable of Curved Trajectories:19770005089[S].USA:NASA Langley Research Center Hampton,1976. |
|