计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 168-175.doi: 10.11896/jsjkx.230600118

• 计算机图形学&多媒体 • 上一篇    下一篇

基于改进DeepLabv3+的遥感影像道路提取算法

王谦, 何朗, 王展青, 黄坤   

  1. 武汉理工大学理学院 武汉 430070
  • 收稿日期:2023-06-14 修回日期:2023-08-31 出版日期:2024-08-15 发布日期:2024-08-13
  • 通讯作者: 何朗(helang@whut.edu.cn)
  • 作者简介:(chanwj@whut.edu.cn)
  • 基金资助:
    国家自然科学基金(62176194)

Road Extraction Algorithm for Remote Sensing Images Based on Improved DeepLabv3+

WANG Qian, HE Lang, WANG Zhanqing, HUANG Kun   

  1. School of Science,Wuhan University of Technology,Wuhan 430070,China
  • Received:2023-06-14 Revised:2023-08-31 Online:2024-08-15 Published:2024-08-13
  • About author:
    WANG Qian,born in 1999,postgra-duate.His main research interest is image processing.
    HE Lang,born in 1974,professor,Ph.D.His main research interests include intelligent calculation and image processing.
  • Supported by:
    National Natural Science Foundation of China(62176194).

摘要: 道路提取可以帮助人们更好地理解城市环境,是城市交通和城市规划等方面的重要部分,随着深度学习与计算机视觉的发展,利用基于深度学习的语义分割算法从遥感影像中提取道路的技术趋于成熟。针对现有的深度学习道路提取算法存在的提取速度慢和容易受背景环境因素干扰而产生漏分割、不连续等问题,提出了一种基于ECANet注意力机制和级联空洞空间金字塔池化模块的轻量化算法CE-DeepLabv3+。首先,将主干特征提取网络更换为轻量级的MobileNetv2,减少参数量,提高模型的执行速度;其次,通过增加空洞空间金字塔池化模块的卷积层进一步扩大感受野,再级联不同特征层来增强语义信息的复用性,从而加强对细节特征的提取能力;再次,加入ECANet注意力机制,抑制背景环境中的干扰因素,聚焦道路信息;最后,采用改进的损失函数进行训练,消除了道路与背景样本不均衡对模型性能产生的影响。实验结果表明,改进算法的性能优良,与原始DeepLabv3+算法相比,在分割效率、分割精度上有较大的提升。

关键词: 语义分割, 遥感影像, 道路提取, 注意力机制, DeepLabv3+, 级联空洞空间金字塔池化

Abstract: Road extraction can help us better understand the urban environment and is an important part of urban transportation and planning.With the development of deep learning and computer vision,the use of deep learning-based semantic segmentation algorithm to extract roads from remote sensing images has become increasingly mature.However,existing deep learning road extraction algorithms suffer from slow extraction speed and susceptibility to background environmental factors,resulting in missed segmentation and discontinuity.To address these issues,a lightweight algorithm called CE-DeepLabv3+ based on ECANet attention mechanism and cascade atrous spatial pyramid pooling module is proposed.Firstly,the main feature extraction network is replaced with the lightweight MobileNetv2 to reduce parameter volume and improve model execution speed.Secondly,the convolution layers of the atrous spatial pyramid pooling module are further expanded to increase the receptive field,and different feature layers are cascaded to enhance semantic information reuse,thereby improving the ability to extract fine-grained features.Thirdly,the ECANet attention mechanism is added to suppress environmental interference and focus on road information.Finally,an improved loss function is used for training to address the impact of road and background sample imbalance on model performance.Experimental results show that the improved algorithm achieves excellent performance,with significant improvements in segmentation efficiency and accuracy compared to the original DeepLabv3+ algorithm.

Key words: Semantic segmentation, Remote sensing images, Road extraction, Attention mechanism, DeepLabv3+, Cascade atrous spatial pyramid pooling

中图分类号: 

  • TP319
[1]WANG W,YANG N,ZHANG Y,et al.A review of road extraction from remote sensing images[J].Journal of Traffic and Transportation Engineering(English Edition),2016,3(3):271-282.
[2]LIAN R,WANG W,MUSTAFA N,et al.Road extractionmethods in high-resolution remote sensing images:A comprehensive review[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:5489-5507.
[3]WANG Z,JENSEN J R,IM J.An automatic region-based image segmentation algorithm for remote sensing applications[J].Environmental Modelling & Software,2010,25(10):1149-1165.
[4]BLASCHKE T,BURNETT C,PEKKARINEN A.Image segmentation methods for object-based analysis and classification[M]//Remote Sensing Image Analysis:Including the Spatial Domain.Dordrecht:springer Netherlands,2004:211-236.
[5]YI F,MOON I.Image Segmentation:A Survey of Graph-Cut Methods[C]//2012 International Conference on Systems And Informatics(ICSAI2012).IEEE,2012:1936-1941.
[6]SHAN P.Image segmentation method based on K-mean algorithm[J].EURASIP Journal on Image and Video Processing,2018,2018(1):1-9.
[7]LOPEZ J,BRANCH J W,CHEN G.Line-based image segmentation method:A new approach to segment VHSR remote sen-sing images automatically[J].European Journal of Remote Sen-sing,2019,52(1):613-631.
[8]WAN Z J,LI L Y,YANG M,et al.Decision tree Model for Extracting Road Intersection Features from Vehicle Trajectory Data[J].Acta Geodaetica et Cartographica Sinica,2019,48(11):1391-1403.
[9]CHENG G,WANG Y,GONG Y,et al. Urban road extraction via graph cuts based probability propagation[C]//2014 IEEE International Conference on Image Processing (ICIP).IEEE,2014:5072-5076.
[10]MAURYA R,GUPTA P R,SHUKLA A S.Road extractionusing k-means clustering and morphological operations[C]//2011 International Conference on Image Information Processing.New York:IEEE,2011:1-6.
[11]ZHONG Z,LI J,CUI W,et al.Fully convolutional networks for building and road extraction:Preliminary results[C]//2016 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).IEEE,2016:1591-1594.
[12]CHEN Z,WANG C,LI J,et al.Reconstruction bias U-Net for road extraction from optical remote sensing images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:2284-2294.
[13]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
[14]LI D D,HE X H,LI P L,et al.Remote Sensing Image Road Extraction Network Based On SPUD-ResNet[J].Computer Engineering and Applications,2021,57(23):240-247.
[15]POUDEL R P K,LIWICKI S,CIPOLLA R.Fast-scnn:Fast semantic segmentation network[J].arXiv:1902.04502,2019.
[16]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:801-818.
[17]SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:In-verted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4510-4520.
[18]WANG Q,WU B,ZHU P,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11534-11542.
[19]DEMIR I,KOPERSKI K,LINDENBAUM D,et al.A challenge to parse the earth through satellite images.2018 IEEE[C]//CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).2018.
[20]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[21]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19.
[22]YANG M,YU K,ZHANG C,et al.Denseaspp for semantic segmentation in street scenes[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:3684-3692.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!