计算机科学 ›› 2024, Vol. 51 ›› Issue (10): 362-371.doi: 10.11896/jsjkx.230800203

• 人工智能 • 上一篇    下一篇

基于OpenFaaS的多边缘管理框架

林璟峰1,2,3, 李鸣1,2,3, 陈星1,2,3, 莫毓昌4   

  1. 1 福州大学计算机与大数据学院 福州 350116
    2 空间数据挖掘与信息共享教育部重点实验室 福州 350002
    3 福州大学福建省网络计算与智能信息处理重点实验室 福州 350116
    4 华侨大学计算科学福建省高校重点实验室 福建 泉州 362021
  • 收稿日期:2023-08-31 修回日期:2024-01-18 出版日期:2024-10-15 发布日期:2024-10-11
  • 通讯作者: 陈星(chenxing@fzu.edu.cn)
  • 作者简介:(1148460129@qq.com)
  • 基金资助:
    国家自然科学基金(62072108);中央引导地方科技发展资金项目(2022L3004);福厦泉国家自主创新示范区协同创新平台项目(2022FX5);福建省科技经济融合服务平台项目(2023XRH001)

Open FaaS-based Multi-edge Management Framework

LIN Jingfeng1,2.3, LI Ming1,2.3, CHEN Xing1,2,3, MO Yuchang4   

  1. 1 College of Computer and Data Science,Fuzhou University,Fuzhou 350116,China
    2 Key Laboratory of Spatial Data Mining & Information Sharing,Ministry of Education,Fuzhou 350002,China
    3 Fujian Key Laboratory of Network Computing and Intelligent Information Processing(Fuzhou University),Fuzhou 350116,China
    4 Fujian Province University Key Laboratory of Computational Science,Huaqiao University,Quanzhou,Fujian 362021,China
  • Received:2023-08-31 Revised:2024-01-18 Online:2024-10-15 Published:2024-10-11
  • About author:LIN Jingfeng,born in 1999,postgra-duate.His main research interests include edge computing and system software.
    CHEN Xing,born in 1985,Ph.D,professor,is a distinguished member of CCF(No.35725M).His main research interests include software systems engineering,systems software and cloud computing.
  • Supported by:
    National Natural Science Foundation of China(62072108),Central Funds Guiding the Local Science and Techno-logy Development(2022L3004),Fuzhou-Xiamen-Quanzhou National Independent Innovation Demonstration Zone Collaborative Innovation Platform(2022FX5) and Fujian Province Technology and Economy Integration Service Platform(2023XRH001).

摘要: 移动边缘计算(Mobile Edge Computing,MEC)是一种利用靠近移动设备的边缘节点提供的计算能力,来提升性能的前沿技术。现有的一些先进的计算卸载方法,已能够支持在MEC环境中基于函数粒度进行动态卸载。函数即服务(Function as a Service,FaaS)作为无服务架构的一种经典范式,提供了一种在函数粒度上构建和拓展应用程序的新方式。相比传统的方式,FaaS提供了理想的资源弹性。OpenFaaS作为当下流行的开源FaaS项目,为FaaS平台的搭建提供了良好的基础。将先进的计算卸载方法与FaaS解决方案(OpenFaaS)进行整合,是有意义且具有挑战的。为此,文中设计并实现了一个基于OpenFaaS的多边缘管理框架,该框架实现了对多个边缘上OpenFaaS的搭建与状态管理。同时,对于需要部署的函数,将其重构并部署到OpenFaaS上,在运行时能够灵活地在多个OpenFaaS间调度函数执行。针对5个实际的Java智能应用对该框架进行了评估,结果表明该框架可以有效管理多个边缘,且与本地运行相比,该框架平均可节省10.49%~49.36%的响应时间。

关键词: 无服务架构, 函数即服务(FaaS), OpenFaaS, 计算卸载, 移动边缘计算

Abstract: Mobile edge computing(MEC) is a cutting-edge technology that utilizes the computing power provided by edge nodes close to mobile devices to improve performance.Some existing state-of-the-art computation offloading mechanisms support dynamic offloading of applications at the function granularity.Function as a service(FaaS),as a typical paradigm of the serverless architecture,enables a new way of building and scaling applications at function granularity.FaaS provides ideal resource elasticity compared to traditional approaches.OpenFaaS,as a popular open-source FaaS project,enables a good foundation for building FaaS platforms.Integrating advanced computation offload mechanism with FaaS solution(OpenFaaS) is meaningful and challenging.To this end,a multi-edge management framework based on OpenFaaS is designed and implemented in the paper.The framework rea-lizes the construction and status management of OpenFaaS on multiple edges.Also,for the functions that need to be deployed,they are reconstructed and then are deployed to OpenFaaS.Furthermore,at runtime,the framework is capable of flexibly scheduling function execution among multiple OpenFaaS instances.The framework is evaluated for 5 real-world Java intelligent applications.Results show that,compared to local invocation,the proposed framework saves response time by 10.49%~49.36% on average and the framework can effectively manage multiple edges.

Key words: Serverless architecture, Function as a service, OpenFaaS, Computation offloading, Mobile edge computing

中图分类号: 

  • TP399
[1]LIU C,CAO Y,LUO Y,et al.A new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructure [J].IEEE Transactions on Services Computing,2017,11(2):249-261.
[2]BRAUD T,BIJARBOONEH F H,CHATZOPOULOS D,et al.Future networking challenges:The case of mobile augmented reality[C]//Proceedings of IEEE 37th International Conference on Distributed Computing Systems(ICDCS).Piscataway,NJ:IEEE,2017:1796-1807.
[3]SU Z,HUI Y,LUAN T H.Distributed task allocation to enable collaborative autonomous driving with network softwarization [J].IEEE Journal on Selected Areas in Communications,2018,36(10):2175-2189.
[4]JEONG S,SIMEONE O,KANG J.Mobile edge computing via a UAV-mounted cloudlet:Optimization of bit allocation and path planning [J].IEEE Transactions on Vehicular Technology,2017,67(3):2049-2063.
[5]ZHAO T,LIU J,WANG Y,et al.Towards low-cost sign lan-guage gesture recognition leveraging wearables [J].IEEE Transactions on Mobile Computing,2019,20(4):1685-1701.
[6]YANG F,LI J,LEI T,et al.Architecture and key technologies for Internet of Vehicles:a survey [J].Journal of Communications and Information Networks,2017,2(2):1-17.
[7]ELGENDY I A,ZHANG W,TIAN Y C,et al.Resource allocation and computation offloading with data security for mobile edge computing[J].Future Generation Computer Systems,2019,100:531-541.
[8]MACH P,BECVAR Z.Mobile edge computing:A survey on architecture and computation offloading[J].IEEE communications surveys & tutorials,2017,19(3):1628-1656.
[9]ETSI.Enabling Multi-access Edge Computing in Internet-of- Things:how to deploy ETSI MEC and oneM2M [EB/OL].(2023-06) [2023-08-18].https://www.etsi.org/images/files/ETSIWhitePapers/ETSI-WP59-Enabling-Multi-access-Edge-Com-puting-in-iot.pdf.
[10]XU C Z,YU Z B.Research on core technology and application of cloud computing[J].Integrated Technology,2012,1(4):1-3.
[11]MAO Y,YOU C,ZHANG J,et al.A survey on mobile edge computing:The communication perspective[J].IEEE Communications Surveys & Tutorials,2017,19(4):2322-2358.
[12]TRAN T X,HAJISAMI A,PANDEY P,et al.Collaborativemobile edge computing in 5G networks:New paradigms,scena-rios,and challenges[J].IEEE Communications Magazine,2017,55(4):54-61.
[13]SHI W,CAO J,ZHANG Q,et al.Edge computing:Vision and challenges[J].IEEE internet of things journal,2016,3(5):637-646.
[14]FOX G C,ISHAKIAN V,MUTHUSAMY V,et al.Status of serverless computing and function-as-a-service(faas) in industry and research[J].arXiv:1708.08028,2017.
[15]AWS.Lambda [EB/OL].[2023-08-18].https://aws.amazon.com/lambda/.
[16]Microsoft.Azure Functions [EB/OL].[2023-08-18].https://azure.microsoft.com/en-us/services/functions/.
[17]Google.Google Cloud Functions[EB/OL].[2023-08-18].ht-tps://cloud.google.com/functions/.
[18]Alibaba.Alibaba Cloud Function Compute[EB/OL].[2023-08-18].https://www.alibabacloud.com/product/function-compute.
[19]Alex Ellis.OpenFaaS [EB/OL].(2022-12-14) [2023-08-18].https://github.com/openfaas/faas/blob/master/README.md.
[20]dgrove-oss.OpenWhisk [EB/OL].(2023-01-26) [2023-08-18].https://github.com/apache/openwhisk/blob/master/README.md.
[21]psschwei.Knative:Kubernetes-based platform to deploy andmanage modern serverless workloads [EB/OL].(2023-01-26) [2023-08-18].https://github.com/knative/docs/blob/main/README.md.
[22]NETO J L D,YU S Y,MACEDO D F,et al.ULOOF:A user level online offloading framework for mobile edge computing[J].IEEE Transactions on Mobile Computing,2018,17(11):2660-2674.
[23]CHEN X,LI M,ZHONG H,et al.FUNOff:Offloading Applications At Function Granularity for Mobile Edge Computing[J/OL].https://doi.org/10.1109/TMC.2023.3240741.
[24]XIANG Q L,PENG X,AKASAKA I,et al.FaaS Migration Approach for Monolithic Applications Based on Dynamic and Static Analysis[J].Journal of Software,2021,33(11):4061-4083.
[25]Docker [EB/OL].[2023-08-18].https://www.docker.com/.
[26]k8s-ci-robot.Kubernetes [EB/OL].(2023-05-04) [2023-08-18].https://github.com/kubernetes/kubernetes/blob/master/README.md.
[27]ZHAO P,TIAN H,CHEN K C,et al.Context-aware TDD configuration and resource allocation for mobile edge computing[J].IEEE Transactions on Communications,2019,68(2):1118-1131.
[28]HOU X,REN Z,WANG J,et al.Reliable computation offloa-ding for edge-computing-enabled software-defined IoV[J].IEEE Internet of Things Journal,2020,7(8):7097-7111.
[29]CHEN X,CHEN J,LIU B,et al.AndroidOff:Offloading androidapplication based on cost estimation[J/OL].https://doi.org/10.1016/j.j-ss.2019.110418.
[30]CHEN X,CHEN S,MA Y,et al.An adaptive offloading framework for android applications in mobile edge computing[J].Science China Information Sciences,2019,62:1-17.
[31]Alex Elli.OpenFaaS Template [EB/OL].(2023-06-28) [2023-08-18].https://github.com/openfaas/templates.
[32]jlerbsc.Javaparser [EB/OL].(2023-07-01) [2023-08-18].https://github.com/javaparser/javaparser/blob/master/readme.md.
[33]Red Hat.What is a container registry[EB/OL].(2022-06-27) [2023-08-18].https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-registry.
[34]Pawel Szulik.cAdvisor [EB/OL].(2023-05-10) [2023-08-18].https://github.com/google/cadvisor/blob/master/README.md.
[35]pr00se.Prometheus [EB/OL].(2023-02-27) [2018-08-18].https://github.com/prometheus/prometheus/blob/main/README.md.
[36]ECMA-404.JSON [EB/OL].[2023-08-18].https://www.json.org/json-en.html.
[37]Wiki.NFS [EB/OL].(2023-08-10) [2023-08-18].https://wiki.archlinux.org/title/NFS.
[38]KubeSphere.All-in-One Installation of Kubernetes and Kube-Sphere on Linux [EB/OL].(2023-04-04) [2023-08-18].https://www.kubesph-ere.io/zh/docs/v3.3/quick-start/all-in-one-on-linux/.2022.
[39]CHEN X,ZHANG J,LIN B,et al.Energy-Efficient Offloading for DNN-Based Smart IoT Systems in Cloud-Edge Environments[J].IEEE Transactions on Parallel and Distributed Systems,2022,33(3):683-697.
[40]of-watchdog [EB/OL].(2023-05-21) [2023-08-18].https://github.com/openfaas/of-watchdog/blob/master/README.md.
[41]CHUN B G,IHM S,MANIATIS P,et al.Clonecloud:elastic execution between mobile device and cloud[C]//Proceedings of the Sixth Conference on Computer Systems.New York:ACM,2011:301-314.
[42]ZHANG Y,HUANG G,LIU X,et al.Refactoring android java code for on-demand computation offloading[J].ACM Sigplan Notices,2012,47(10):233-248.
[43]KEMP R,PALMER N,KIELMANN T,et al.Cuckoo:a computation offloading framework for smartphones[C]//Proceedings of Mobile Computing,Applications,and Services:Second International ICST Conference,Mobi-CASE 2010.Berlin:Springer,2012:59-79.
[44]XU M,QIAN F,ZHU M,et al.Deepwear:Adaptive local offloading for on-wearable deep learning[J].IEEE Transactions on Mobile Computing,2019,19(2):314-330.
[45]CHEN X,LI M,ZHONG H,et al.DNNOff:offloading DNN-based intelligent IoT applications in mobile edge computing[J].IEEE Transactions on Industrial Informatics,2021,18(4):2820-2829.
[46]LI M,ZHANG J,LIN B,et al.MultiOff:offloading support and service deployment for multiple IoT applications in mobile edge computing[J].Supercomput,2022,78:15123-15153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!