计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 103-111.doi: 10.11896/jsjkx.231100010
杨东昇, 王桂玲, 郑鑫
YANG Dongsheng, WANG Guiling, ZHENG Xin
摘要: 随着Internet和Web上各种服务和API数量的迅速增加,开发人员要快速准确地找到满足其需求的API变得越来越具有挑战性,因此亟需一个高效的推荐系统。目前,将图神经网络应用于服务推荐领域取得了巨大成功,但大多数方法仍然局限于简单的交互,忽略了mashup和API调用之间的内在关系;为了解决这个问题,提出了一种基于层次超图注意力的服务推荐方法(H-HGSR)来进行API推荐。首先定义了8种类型的超边,并探究了对应类型超边的超图邻接矩阵生成方法,然后提出了节点级和超边级的注意力机制。节点级注意力机制用于聚合特定类型超图邻接矩阵下的不同邻居的重要信息,以捕获mashup和API之间的高阶关系;超边级注意力机制用于对从不同类型超图邻接矩阵生成的节点嵌入进行加权组合。通过学习节点级和超边级注意力的重要性,可以获得更准确的嵌入表示。最后使用一个多层感知器神经网络(MLP)进行服务推荐。在Programmable Web真实数据集上进行了大量实验,结果表明,所提H-HGSR框架优于目前最先进的服务推荐方法。
中图分类号:
[1] ZHENG N,LI Q,LIAO S,et al.Which photo groups should I choose? A comparative study of recommendation algorithms in Flickr[J].Journal of Information Science,2010,36(6):733-750. [2] WANG R,CHENG H K,JIANG Y,et al.A novel matrix facto-rization model for recommendation with LOD-based semantic similarity measure[J].Expert Systems with Applications,2019,123:70-81. [3] LIU Z,GUO S,WANG L,et al.A multi-objective service composition recommendation method for individualized customer:hybrid MPA-GSO-DNN model[J].Computers & Industrial Engineering,2019,128:122-134. [4] LIU S,ZHENG Y.Long-tail session-based recommendation[C]//Proceedings of the 14th ACM Conference on Recommender Systems.2020:509-514. [5] BRETTO A.Hypergraph theory:An introduction[M].Cham:Springer,2013. [6] YUE W,WANG Z,ZHANG J,et al.An overview of recommendation techniques and their applications in healthcare[J].IEEE/CAA Journal of Automatica Sinica,2021,8(4):701-717. [7] YAO L,WANG X,SHENG Q,et al.Service recommendationfor Mashup composition with implicit correlation regularization[C]//2015 IEEE International Conference on Web Services.2015. [8] FLETCHER K.Regularizing matrix factorization with implicituser preference embeddings for web API recommendation[C]//2019 IEEE International Conference on Services Computing(SCC).IEEE,2019:1-8. [9] YAO L,WANG X,SHENG Q Z,et al.Service recommendation for mashup composition with implicit correlation regularization[C]//2015 IEEE International Conference on Web Services.IEEE,2015:217-224. [10] GUO H,TANG R,YE Y,et al.DeepFM:a factorization-ma-chine based neural network for CTR prediction[J].arXiv:1703.04247,2017. [11] LIANG D,KRISHNAN R G,HOFFMAN M D,et al.Varia-tional autoencoders for collaborative filtering[C]//Proceedings of the 2018 World Wide Web Conference.2018:689-698. [12] HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[J].arXiv:1706.02216,2017. [13] ZHANG Y,YANG H,KUANG L.A web API recommendation method with composition relationship based on GCN[C]//2020 IEEE International Conference on Parallel & Distributed Processing with Applications,Big Data & Cloud Computing,Sustainable Computing & Communications,Social Computing & Networking(ISPA/BDCloud/SocialCom/SustainCom).IEEE,2020:601-608. [14] HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182. [15] BAI T,WEN J R,ZHANG J,et al.A neural collaborative filtering model with interaction-based neighborhood[C]//Procee-dings of the 2017 ACM on Conference on Information and Knowledge Management.2017:1979-1982. [16] WANG X,HE X,WANG M,et al.Neural graph collaborativefiltering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [17] HE L,CHEN H,WANG D,et al.Click-through rate prediction with multi-modal hypergraphs[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.2021:690-699. [18] FENG Y,YOU H,ZHANG Z,et al.Hypergraph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:3558-3565. [19] BAI S,ZHANG F,TORR P H S.Hypergraph convolution andhypergraph attention[J].Pattern Recognition,2021,110:107637. [20] PENG S,SUGIYAMA K,MINE T.Less is more:reweighting important spectral graph features for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:1273-1282. [21] WANG J,DING K,HONG L,et al.Next-item recommendation with sequential hypergraphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:1101-1110. [22] JI S,FENG Y,JI R,et al.Dual channel hypergraph collaborative filtering[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:2020-2029. [23] XIA L,HUANG C,XU Y,et al.Hypergraph contrastive colla-borative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:70-79. [24] NGUYEN M,YU J,NGUYEN T,et al.Attentional matrix factorization with context and co-invocation for service recommendation[J].Expert Systems with Applications,2021,186:115698. [25] NGUYEN M,YU J,NGUYEN T,et al.High-order autoencoderwith data augmentation for collaborative filtering[J].Know-ledge-Based Systems,2022,240:107773. [26] VELIČKOVIĆP,CUCURULL G,CASANOVA A,et al.Graphattention networks[J].arXiv:1710.10903,2017. [27] MA Y,GENG X,WANG J.A deep neural network with multi-plex interactions for cold-start service recommendation[J].IEEE Transactions on Engineering Management,2020,68(1):105-119. [28] WANG G,YU J,NGUYEN M,et al.Motif-based graph atten-tional neural network for web service recommendation[J].Knowledge-Based Systems,2023,269:110512. [29] ZHENG X,WANG G,ZHANG J,et al.H-MGSR:A Hierarchical Motif-based Graph Attention Neural Network for Service Recommendation[C]//2023 IEEE International Conference on Web Services(ICWS).IEEE,2023:553-562. |
|