计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 103-111.doi: 10.11896/jsjkx.231100010

• 数据库&大数据&数据科学 • 上一篇    下一篇

一种基于层次超图注意力神经网络的服务推荐算法

杨东昇, 王桂玲, 郑鑫   

  1. 北方工业大学信息学院 北京 100144
    北方工业大学大规模流数据集成与分析技术北京市重点实验室 北京 100144
  • 收稿日期:2023-11-01 修回日期:2024-03-27 出版日期:2024-11-15 发布日期:2024-11-06
  • 通讯作者: 王桂玲(wangguiling@ncut.edu.cn)
  • 作者简介:(ydsheng1@163.com)
  • 基金资助:
    国家自然科学基金重点项目(61832004);国家自然科学基金国际(地区)合作与交流项目(62061136006)

Hierarchical Hypergraph-based Attention Neural Network for Service Recommendation

YANG Dongsheng, WANG Guiling, ZHENG Xin   

  1. School of Information,North China University of Technology,Beijing 100144,China
    Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data,North China University of Technology,Beijing 100144,China
  • Received:2023-11-01 Revised:2024-03-27 Online:2024-11-15 Published:2024-11-06
  • About author:YANG Dongsheng,born in 1995,postgraduate.His main research interests include recommendation system and deep learning.
    WANG Guiling,born in 1978,Ph.D,professor,is a professional member of CCF(No.17649M).Her main research interests include data integration,ser-vices computing and large-sscale strea-ming.
  • Supported by:
    Key Project of the National Natural Science Foundation of China(61832004) and International(Regional) and Cooperation and Exchange Project of National Natural Science Foundation of China(62061136006).

摘要: 随着Internet和Web上各种服务和API数量的迅速增加,开发人员要快速准确地找到满足其需求的API变得越来越具有挑战性,因此亟需一个高效的推荐系统。目前,将图神经网络应用于服务推荐领域取得了巨大成功,但大多数方法仍然局限于简单的交互,忽略了mashup和API调用之间的内在关系;为了解决这个问题,提出了一种基于层次超图注意力的服务推荐方法(H-HGSR)来进行API推荐。首先定义了8种类型的超边,并探究了对应类型超边的超图邻接矩阵生成方法,然后提出了节点级和超边级的注意力机制。节点级注意力机制用于聚合特定类型超图邻接矩阵下的不同邻居的重要信息,以捕获mashup和API之间的高阶关系;超边级注意力机制用于对从不同类型超图邻接矩阵生成的节点嵌入进行加权组合。通过学习节点级和超边级注意力的重要性,可以获得更准确的嵌入表示。最后使用一个多层感知器神经网络(MLP)进行服务推荐。在Programmable Web真实数据集上进行了大量实验,结果表明,所提H-HGSR框架优于目前最先进的服务推荐方法。

关键词: 服务推荐, 超图, 图神经网络, 注意力机制

Abstract: With the rapid growth of various services and APIs on the Internet and the Web,it has become increasingly challenging for developers to quickly and accurately find APIs that meet their needs,thus requiring an efficient recommendation system.Currently,the application of graph neural networks in service recommendation has achieved great success,but many such methods are still limited to simple interactions and ignore the intrinsic relationships between mashups and API calls.To address this issue,this paper proposes a hierarchical hypergraph-based attention neural network for service recommendation method(H-HGSR) for API recommendation.First,eight types of hyperedges are defined,and the corresponding hypergraph adjacency matrix generation methods are explored.Then,node-level and hyperedge-level attention mechanisms are proposed.The node-level attention mechanism is used to aggregate important information from different neighbors under specific types of hypergraph adjacency matrices to capture high-order relationships between mashups and APIs.The hyperedge-level attention mechanism is used to weight the combination of node embeddings generated from different types of hypergraph adjacency matrices.By learning the importance of node-level and hyperedge-level attention,more accurate embedding representations can be obtained.Finally,a multi-layer perceptron neural network(MLP) is used for service recommendation.Extensive experiments are conducted on the Programmable Web real dataset,and the overall comparison results show that the proposed H-HGSR framework outperforms the state-of-the-art service recommendation methods.

Key words: Service recommendation, Hypergraphs, Graph neural networks, Attention mechanism

中图分类号: 

  • TP311
[1] ZHENG N,LI Q,LIAO S,et al.Which photo groups should I choose? A comparative study of recommendation algorithms in Flickr[J].Journal of Information Science,2010,36(6):733-750.
[2] WANG R,CHENG H K,JIANG Y,et al.A novel matrix facto-rization model for recommendation with LOD-based semantic similarity measure[J].Expert Systems with Applications,2019,123:70-81.
[3] LIU Z,GUO S,WANG L,et al.A multi-objective service composition recommendation method for individualized customer:hybrid MPA-GSO-DNN model[J].Computers & Industrial Engineering,2019,128:122-134.
[4] LIU S,ZHENG Y.Long-tail session-based recommendation[C]//Proceedings of the 14th ACM Conference on Recommender Systems.2020:509-514.
[5] BRETTO A.Hypergraph theory:An introduction[M].Cham:Springer,2013.
[6] YUE W,WANG Z,ZHANG J,et al.An overview of recommendation techniques and their applications in healthcare[J].IEEE/CAA Journal of Automatica Sinica,2021,8(4):701-717.
[7] YAO L,WANG X,SHENG Q,et al.Service recommendationfor Mashup composition with implicit correlation regularization[C]//2015 IEEE International Conference on Web Services.2015.
[8] FLETCHER K.Regularizing matrix factorization with implicituser preference embeddings for web API recommendation[C]//2019 IEEE International Conference on Services Computing(SCC).IEEE,2019:1-8.
[9] YAO L,WANG X,SHENG Q Z,et al.Service recommendation for mashup composition with implicit correlation regularization[C]//2015 IEEE International Conference on Web Services.IEEE,2015:217-224.
[10] GUO H,TANG R,YE Y,et al.DeepFM:a factorization-ma-chine based neural network for CTR prediction[J].arXiv:1703.04247,2017.
[11] LIANG D,KRISHNAN R G,HOFFMAN M D,et al.Varia-tional autoencoders for collaborative filtering[C]//Proceedings of the 2018 World Wide Web Conference.2018:689-698.
[12] HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[J].arXiv:1706.02216,2017.
[13] ZHANG Y,YANG H,KUANG L.A web API recommendation method with composition relationship based on GCN[C]//2020 IEEE International Conference on Parallel & Distributed Processing with Applications,Big Data & Cloud Computing,Sustainable Computing & Communications,Social Computing & Networking(ISPA/BDCloud/SocialCom/SustainCom).IEEE,2020:601-608.
[14] HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182.
[15] BAI T,WEN J R,ZHANG J,et al.A neural collaborative filtering model with interaction-based neighborhood[C]//Procee-dings of the 2017 ACM on Conference on Information and Knowledge Management.2017:1979-1982.
[16] WANG X,HE X,WANG M,et al.Neural graph collaborativefiltering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174.
[17] HE L,CHEN H,WANG D,et al.Click-through rate prediction with multi-modal hypergraphs[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.2021:690-699.
[18] FENG Y,YOU H,ZHANG Z,et al.Hypergraph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:3558-3565.
[19] BAI S,ZHANG F,TORR P H S.Hypergraph convolution andhypergraph attention[J].Pattern Recognition,2021,110:107637.
[20] PENG S,SUGIYAMA K,MINE T.Less is more:reweighting important spectral graph features for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:1273-1282.
[21] WANG J,DING K,HONG L,et al.Next-item recommendation with sequential hypergraphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:1101-1110.
[22] JI S,FENG Y,JI R,et al.Dual channel hypergraph collaborative filtering[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:2020-2029.
[23] XIA L,HUANG C,XU Y,et al.Hypergraph contrastive colla-borative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:70-79.
[24] NGUYEN M,YU J,NGUYEN T,et al.Attentional matrix factorization with context and co-invocation for service recommendation[J].Expert Systems with Applications,2021,186:115698.
[25] NGUYEN M,YU J,NGUYEN T,et al.High-order autoencoderwith data augmentation for collaborative filtering[J].Know-ledge-Based Systems,2022,240:107773.
[26] VELIČKOVIĆP,CUCURULL G,CASANOVA A,et al.Graphattention networks[J].arXiv:1710.10903,2017.
[27] MA Y,GENG X,WANG J.A deep neural network with multi-plex interactions for cold-start service recommendation[J].IEEE Transactions on Engineering Management,2020,68(1):105-119.
[28] WANG G,YU J,NGUYEN M,et al.Motif-based graph atten-tional neural network for web service recommendation[J].Knowledge-Based Systems,2023,269:110512.
[29] ZHENG X,WANG G,ZHANG J,et al.H-MGSR:A Hierarchical Motif-based Graph Attention Neural Network for Service Recommendation[C]//2023 IEEE International Conference on Web Services(ICWS).IEEE,2023:553-562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!