计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 166-173.doi: 10.11896/jsjkx.230900078

• 计算机图形学&多媒体 • 上一篇    下一篇

基于隐空间匹配的无监督目标漂移校正及跟踪

范晓鹏, 彭力, 杨杰龙   

  1. 江南大学物联网工程学院 江苏 无锡 214026
  • 收稿日期:2023-09-14 修回日期:2024-01-28 出版日期:2024-11-15 发布日期:2024-11-06
  • 通讯作者: 彭力(pengli@jiangnan.edu.cn)
  • 作者简介:(fanxiaopeng2021@163.com)
  • 基金资助:
    国家自然科学基金青年科学基金(62106082)

Unsupervised Target Drift Correction and Tracking Based on Hidden Space Matching

FAN Xiaopeng, PENG Li, YANG Jielong   

  1. School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214026,China
  • Received:2023-09-14 Revised:2024-01-28 Online:2024-11-15 Published:2024-11-06
  • About author:FAN Xiaopeng,born in 1998,postgra-duate.His main research interests include object tracking and pose estimation.
    PENG Li,born in 1967,Ph.D,professor.His main research interests include computer vision and pattern recognition.
  • Supported by:
    Young Scientists Fund of the National Natural Science Foundation of China(62106082).

摘要: 目标跟踪是计算机视觉领域的一个基础研究问题。随着跟踪技术的发展,现存的跟踪器主要存在两个挑战,即依赖于大量的数据标注信息和跟踪漂移,它们严重限制了跟踪器性能的提升。为了应对以上挑战,提出了无监督目标跟踪和隐空间匹配的方法。首先,通过可校正光流方法在前景中生成图像对;其次,利用生成的图像对从头开始训练孪生跟踪器;最后,使用隐空间匹配的方法,解决了跟踪器在目标形变较大、遮挡、出视野和漂移等情况下跟丢的问题。实验结果表明,算法UHOT的性能在多个数据集上有显著提升,在困难场景下展现出了较强的鲁棒性。与最新的无监督算法SiamDF相比,UHOT在VOT 数据集上取得了8% 的增益,与最新的监督孪生跟踪器相当。

关键词: 无监督, 滑动窗口, 隐空间, 模板匹配, 目标跟踪

Abstract: Object tracking is a basic research issue in the field of computer vision.With the development oftracking technology,existing trackers mainly have two challenges,namely relying on a large amount of data annotation information and tracking drift,which seriously limits the improvement of tracker performance.In order to overcome the above challenges,unsupervised target tracking and hidden space matching methods are proposed.Firstly,image pairs are generated in the foreground via a correctable optical flow method.Secondly,the generated image pairs are utilized to train the siamese tracker from scratch.Finally,the hidden space matching method is used to solve the problem of losing track when the target deforms greatly,is occluded,goes out of the field of view and drifting.Experimental results show that the algorithm UHOT significantly improves on multiple datasets and demonstrates strong robustness in difficult scenarios.Compared with the latest unsupervised algorithm SiamDF,UHOT gaines 8% gain on the VOT dataset,comparable to state-of-the-art supervised siamese trackers.

Key words: Unsupervised, Sliding window, Hidden space, Template matching, Object tracking

中图分类号: 

  • TP391.4
[1] WANG N,SONG Y B,MA C,et al.Unsupervised deep tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:1308-1317.
[2] CHONG H S,MA Y J,CHEN J C,et al.S2siamfc:Self-supervised fully convolutional siamese network for visual tracking[C]//Proceedings of the 28th ACM International Conference on Multimedia.2020:1948-1957.
[3] LIU L,ZHANG J N,HE R F,et al.Learning by analogy:Reliable supervision from transformations for unsupervised optical flow estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:6489-6498.
[4] LUCA B,JACK V,JOAO F,et al.Fully-convolutional siamese networks for object tracking[C]//Computer Vision-ECCV 2016 Workshops:Amsterdam,The Netherlands,October 8-10 and 15-16,2016,Proceedings,Part II 14.Springer,2016:850-865.
[5] CAI H Y,LAN L,ZHANG J,et al.Siamdf:Tracking training data-free siamese tracker[M].Neural Networks,2023.
[6] LI H J,PENG L.High-speed tracking algorithm based on negative sample mining and feature fusion[J].Control and Decision Making,2023,38(9):2554-2562.
[7] SUN K W,WANG Z H,LIU H,et al.Maximum Overlap Single Target Tracking Algorithm Based on Attention Mechanism.[J].Computer Science,2023,50(S1):397-401.
[8] ZENG Z H,LUO H L.Cross-dataset Learning CombiningMulti-object Tracking and Human Pose Estimation[J].Compu-ter Science,2023,50(S1):512-518.
[9] ZHENG J L,MA C,PENG H W,et al.Learning to track objects from unlabeled videos[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:13546-13555.
[10] WU Q Q,WAN J,ANTONI B C.Progressive unsupervisedlearning for visual object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:2993-3002.
[11] ZHANG J,LIU Y,LIU H,et al.Learning local-global multiple correlation filters for robust visual tracking with Kalman filter redetection[J].Sensors,2021,21(4):1129.
[12] LE N,RATHOUR V S,YAMAZAKI K,et al.Deep reinforcement learning in computer vision:a comprehensive survey[J].Artificial Intelligence Review,2022,55(4):2733-2819.
[13] WANG Q,LI Z,LUCA B,et al.Fast online object tracking and segmentation:A unifying approach[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:1328-1338.
[14] CHENG Y M,LI L L,XU Y Y,et al.Segment and track anything[J].arXiv:2305.06558,2023.
[15] LI B,YAN J J,WU W,et al.High performance visual tracking with siamese region proposal network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8971-8980.
[16] TARG S S,DIOGO A,KEVIN L.Resnet in resnet:Generalizing residual architectures[J].arXiv:1603.08029,2016.
[17] YU J H,JIANG Y N,WANG Z Y,et al.Unitbox:An advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia.2016:516-520.
[18] HO Y S,SAMUEL W.The real-worldweight cross-entropy loss function:Modeling the costs of mislabeling[J].IEEE Access,2019,8:4806-4813.
[19] JADERBERG M,SIMON K,ZISSERMAN A,et al.Spatialtransformer networks.[J].arXiv:1506.02025,2015.
[20] JOOST V A,ANITHA K,MARC A R,et al.Transformation-based models of video sequences[J].arXiv:1701.08435,2017.
[21] TOMAS J,ANKUSH G,HAKAN B,et al.Unsupervised lear-ning of object landmarks through conditional image generation[C]//Advances in Neural Information Processing Systems 31.2018.
[22] OLAF R,PHILIPP F,THOMAS B.U-net:Convolutional net-works for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th Interna=tional Conference,Munich,Germany,October 5-9,2015,Proceedings,Part III 18.Springer,2015:234-241.
[23] ALIAK S,STEPHANE L,SERGEY T,et al.First order motion model for image animation[C]//Advances in Neural Information Processing Systems 32.2019.
[24] MATEJ K,ALES L,JIRI M,et al.The sixth visual object tra-cking vot2018 challenge results[C]//Proceedings of theEuro-pean Conference on Computer Vision(ECCV).2018.
[25] WU Y,LI J W,YANG M H.Online object tracking:A bench-mark[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2013:2411-2418.
[26] ZHANG Z P,PENG H W.Deeper and wider siamese networks for real-time visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4591-4600.
[27] LI Y M,FU C H,DING F Q,et al.Autotrack:Towards high-performance visual tracking for uav with automatic spatio-temporal regularization[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition(CVPR).2020.
[28] MARTIN D,GOUTAM B,FAHAD S K,et al.Atom:Accuratetracking by overlap maximization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4660-4669.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!