计算机科学 ›› 2024, Vol. 51 ›› Issue (10): 287-294.doi: 10.11896/jsjkx.230800013
薛如翔1, 卫俊杰2, 周华伟2, 杨海1, 王喆1
XUE Ruxiang1, WEI Junjie2, ZHOU Huawei2, YANG Hai1, WANG Zhe1
摘要: 红外弱小目标检测任务是红外探测领域的重点研究内容之一。然而由于其应用场景的特殊性,包含红外弱小目标的数据并不多见,且标注往往并不充分,这给由数据驱动的深度学习目标检测模型带来了挑战和困难。针对红外弱小目标数据集少、缺乏标记信息等问题,提出一种基于可见光-红外跨域迁移的红外弱小目标检测模型,将数据量更丰富的可见光域监督信息迁移到红外域中,实现红外域的无监督训练。首先,在YOLOv5的基础上设计通道增强的数据处理方法,利用低成本的通道分离技巧将可见光图像转换成类红外图像,缩小可见光域和红外域之间的模态差异。然后,构建多尺度域自适应模块,采用对抗训练的方式,对骨干网络提取得到的不同尺度特征在特征空间中进行域混淆以减小域偏移的影响,提高模型对弱小目标的检测性能。实验结果表明,所提方法改进后的模型相比各版本的YOLOv5模型检测精度均有所提升;与其他现有的无监督域自适应目标检测算法相比,所提方法在红外弱小目标的检测精度上明显占优。
中图分类号:
[1]ZHU Y,HAO Y G,WANG H Y.Deep learning based salientobject detection in infrared video [J].Computer Science,2023,50(9):227-234. [2]ZHAO M,LI W,LI L,et al.Single-frame infrared small-target detection:A survey [J].IEEE Geoscience and Remote Sensing Magazine,2022,10(2):87-119. [3]QIN Y,LI B.Effective infrared small target detection utilizing anovel local contrast method [J].IEEE Geoscience and Remote Sensing Letters,2016,13(12):1890-1894. [4]JIAO J,XIE Y J,ZHANG H L,et al.Infrared dim and small target detection based on background prediction by wavelet filter [J].Computer Science,2016,43(2):60-63. [5]CHEN C P,LI H,WEI Y T,et al.A local contrast method forsmall infrared target detection [J].IEEE Transactions on Geoscience and Remote Sensing,2013,52(1):574-581. [6]DENG H,SUN X,LIU M,et al.Infrared small-target detection using multiscale gray difference weighted image entropy [J].IEEE Transactions on Aerospace and Electronic Systems,2016,52(1):60-72. [7]GAO C,MENG D,YANG Y,et al.Infrared patch-image model for small target detection in a single image [J].IEEE Transactions on Image Processing,2013,22(12):4996-5009. [8]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [9]REDMON J,DIVVALA S.GIRSHICK R,et al.You only look once:Unified,real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:779-788. [10]DAI Y,WU Y,ZHOU F,et al.Asymmetric contextual modulation for infrared small target detection [C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.IEEE,2021:950-959. [11]ZHANG M,ZHANG R,YANG Y,et al.ISNet:Shape matters for infrared small target detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans,LA,USA:IEEE,2022:877-886. [12]LI B,XIAO C,WANG Y,et al.Dense nested attention network for infrared small target detection [J].IEEE Transactions on Image Processing,2022,32:1745-1758. [13]ZHUANG F,QI Z,DUAN K,et al.A comprehensive survey on transfer learning [J].Proceedings of the IEEE,2020,109(1):43-76. [14]FARAHANI A,VOGHOEI S,RASHEED K,et al.A brief review of domain adaptation [C]//Advances in Data Science and Information Engineering:Proceedings from ICDATA 2020 and IKE 2020.2021:877-894. [15]CHEN Y,LI W,SAKARIDIS C,et al.Domain adaptive faster r-cnn for object detection in the wild [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:3339-3348. [16]SAITO K,USHIKU Y,HARADA T,et al.Strong-weak distribution alignment for adaptive object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,CA,USA:IEEE,2019:6956-6965. [17]LIU X Y,LI W Y,YANG Q S,et al.Towards robust adaptive object detection under noisy annotations [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans,LA,USA:IEEE,2022:14207-14216. [18]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:770-778. [19]HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition [J].IEEE Tran-sactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [20]LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection [C]//Proceedings of the IEEE Conference on Computer Vision and PatternRecognition.Hono-lulu,HI,USA:IEEE,2017:2117-2125. [21]LIU S,QI L,QIN H F,et al.Path aggregation network for instance segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:8759-8768. [22]BOCHKOVSKIY A,WANG C Y,LIAO H Y M,et al.YOLOv4:Optimal Speed and Accuracy of Object Detection [J].arXiv:2004.10934,2020. [23]XIA D X,LIU H J,XU L L,et al.Visible-infrared person re-identification with data augmentation via cycle-consistent adversarial network [J].Neurocomputing,2021,443:35-46. [24]YE M,RUAN W J,DU B,et al.Channel augmented joint lear-ning for visible-infrared recognition [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.IEEE,2021:13567-13576. [25]LUO Y W,ZHENG L,GUAN T,et al.Taking a closer look at domain shift:Category-level adversaries for semantics consistent domain adaptation [C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.Long Beach,CA,USA:IEEE,2019:2507-2516. [26]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks [J].The Journal of Machine Learning Research,2016,17(1):2096-2030. [27]BEN-DAVID S,BLITZER J,GRAMMAR K,et al.A theory of learning from different domains [J].Machine Learning,2010,79:151-175. [28]COLUCCIA A,FASCISTA A,SCHUMANN A,et al.Drone-vs-bird detection challenge at IEEE AVSS2021 [C]//2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS).IEEE,2021:1-8. [29]SUN X L,GUO L C,ZHANG W L,et al.A dataset for small infrared moving target detection under clutter background[EB/OL].https://doi.org/10.11922/sciencedb.j00001.00. [30]XU C,WANG J W,YANG W,et al.Dot distance for tiny object detection in aerial images [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2021:1192-1201. [31]LIU T,ZHAO Y,WEI Y C,et al.Concealed object detection for activate millimeter wave image [J].IEEE Transactions on Industrial Electronics,2019,66(12):9909-9917. |
|