计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 389-399.doi: 10.11896/jsjkx.230900028
李春江1, 尹少平1, 池浩田1, 杨静1,3, 耿海军1,2,3
LI Chunjiang1, YIN Shaoping1, CHI Haotian1, YANG Jing1,3, GENG Haijun1,2,3
摘要: 软件定义网络(Software-defined Networking,SDN)是一种提供细颗粒集中网络管理服务的新型网络体系结构,主要有控制与转发分离、集中控制和开放接口基本特征。SDN由于控制层的集中管理逻辑,控制器被攻击者作为理想的分布式拒绝服务攻击(Distributed Denial-of-Service,DDoS)目标。然而,传统的基于统计的DDoS攻击检测算法常存在误报率高、阈值固定等问题;基于机器学习模型的检测算法常存在计算资源消耗大、泛化性差等问题。为此,文中提出了一种基于统计特征与集成自编码器的DDoS攻击双层检测模型。基于统计的方法提取Rényi熵特征,设置动态阈值判断可疑流量;基于集成自编码器算法对可疑流量进行更精确的DDoS攻击判断。双层检测模型不仅提升了检测效果,解决了误报率高的问题,同时还有效地缩短了检测时间,从而减少了计算资源的消耗。实验结果表明,该模型在不同网络环境下都有较高的准确率,不同数据集检测的F1值最低都达到了98.5%以上,表现出了很强的泛化性。
中图分类号:
[1] KREUTZ D,RAMOS F M V,VERISSIMO P E,et al.Software-defined networking:A comprehensive survey[J].Proceedings of the IEEE,2014,103(1):14-76. [2] FEAMSTER N,REXFORD J,ZEGURA E.The road to SDN:an intellectual history of programmable networks[J].ACM SIGCOMM Computer Communication Review,2014,44(2):87-98. [3] ORDONEZ-LUCENA J,AMEIGEIRAS P,LOPEZ D,et al.Network slicing for 5G with SDN/NFV:Concepts,architectures,and challenges[J].IEEE Communications Magazine,2017,55(5):80-87. [4] YANG M,LI Y,JIN D,et al.OpenRAN:a software-defined ran architecture via virtualization[J].ACM SIGCOMM computer communication review,2013,43(4):549-550. [5] TRIVISONNO R,GUERZONI R,VAISHNAVI I,et al.SDN-based 5G mobile networks:architecture,functions,procedures and backward compatibility[J].Transactions on Emerging Telecommunications Technologies,2015,26(1):82-92. [6] LI D,CHEN G H,REN F Y,et al.Data Center Network Research Progress and Trends[J].Chinese Journal of Computers,2014,37(2):259-274. [7] SON J,BUYYA R.A taxonomy of software-defined networking(SDN)-enabled cloud computing[J].ACMComputing Surveys(CSUR),2018,51(3):1-36. [8] WANG M M,LIU J W,CHEN J,et al.Software Defined Networking:Security Model,Threats and Mechanism[J].Journal of Software,2016,27(4):970-987. [9] DEB R,ROY S.A comprehensive survey of vulnerability and information security in SDN[J].Computer Networks,2022,206:108802. [10] BAWANY N Z,SHAMSI J A,SALAH K.DDoS attack detection and mitigation using SDN:methods,practices,and solutions[J].Arabian Journal for Science and Engineering,2017,42:425-441. [11] LIU Z,JIN H,HU Y C,et al.Practical proactive DDoS-attack mitigation via endpoint-driven in-network traffic control[J].IEEE/ACM Transactions on Networking,2018,26(4):1948-1961. [12] BHATIA S,BEHAL S,AHMED I.Distributed denial of service attacks and defense mechanisms:current landscape and future directions[J].Versatile Cybersecurity,2018:55-97. [13] KAUR S,KUMAR K,AGGARWAL N,et al.A comprehensive survey of DDoS defense solutions in SDN:Taxonomy,research challenges,and future directions[J].Computers & Security,2021,110:102423. [14] REVATHI M,RAMALINGAM V V,AMUTHA B.A machine learning based detection and mitigation of the DDOS attack by using SDN controller framework[J].Wireless Personal Communications,2022,127(3):2417-2441. [15] TAYFOUR O E,MARSONO M N.Collaborative detection and mitigation of DDoS in software-defined networks[J].The Journal of Supercomputing,2021,77:13166-13190. [16] NOORIBAKHSH M,MOLLAMOTALEBI M.A review on statistical approaches for anomaly detection in DDoS attacks[J].Information Security Journal:A Global Perspective,2020,29(3):118-133. [17] JIA K,WANG J N,LIU F.DDoS detection and mitigationFramework in SDN[J].Journal of Cyber Security,2021,6(1):17-31 [18] WANG R,JIA Z,JU L.An entropy-based distributed DDoS detection mechanism in software-defined networking[C]//2015 IEEE Trustcom/BigDataSE/ISPA.IEEE,2015,1:310-317. [19] LIU Z,HU C,SHAN C.Riemannian manifold on stream data:Fourier transform and entropy-based DDoS attacks detection method[J].Computers & Security,2021,109:102392. [20] FOULADI R F,ERMI O,ANARIM E.A DDoS attack detection and countermeasure scheme based on DWT and auto-encoder neural network for SDN[J].Computer Networks,2022,214:109140. [21] ZHAO P,ZHAO W T,FU Z J,et al.SDN self-protection system based on Renyi entropy[J].Chinese Journal of Network and Information Security,2021,7(3):85-94. [22] SWAMI R,DAVE M,RANGA V.Defending DDoS against software defined networks using entropy[C]//2019 4th International Conference on Internet of Things:Smart Innovation and Usages(IoT-SIU).IEEE,2019:1-5. [23] MIRSKY Y,DOITSHMAN T,ELOVICI Y,et al.Kitsune:anensemble of autoencoders for online network intrusion detection[J].arXiv:1802.09089,2018. [24] CHETOUANE A,KAROUI K.A survey of machine learning methods for DDoS threats detection against SDN[C]//Distributed Computing for Emerging Smart Networks:Third International Workshop,DiCES-N 2022,Bizerte,Tunisia.Springer International Publishing,2022:99-127. [25] TSOBDJOU L D,PIERRE S,QUINTERO A.An online entropy-based DDoS flooding attack detection system with dynamic threshold[J].IEEE Transactions on Network and Service Ma-nagement,2022,19(2):1679-1689. [26] AHALAWAT A,BABU K S,TURUK A K,et al.A low-rate DDoS detection and mitigation for SDN using Rényi Entropy with Packet Drop[J].Journal of Information Security and Applications,2022,68:103212. [27] FOULADI R F,ERMI O,ANARIM E.A DDoS attack detection and defense scheme using time-series analysis for SDN[J].Journal of Information Security and Applications,2020,54:102587. [28] ISA M M,MHAMDI L.Hybrid Deep Autoencoder with Random Forest in Native SDN Intrusion Detection Environment[C]//ICC 2022-IEEE International Conference on Communications.IEEE,2022:1698-1703. [29] TAN L,PAN Y,WU J,et al.A new framework for DDoS attack detection and defense in SDN environment[J].IEEE Access,2020,8:161908-161919. [30] WANG L,LIU Y.A DDoS attack detection method based on information entropy and deep learning in SDN[C]//2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference(ITNEC).IEEE,2020,1:1084-1088. [31] ZHANG L,WANG J S.DDoS Attack Detection Model Based on Information Entropy and DNN in SDN[J].Journal of Computer Research and Development,2019,56(5):909-918. [32] WANG T,GUO Z,CHEN H,et al.BWManager:Mitigating denial of service attacks in software-defined networks through bandwidth prediction[J].IEEE Transactions on Network and Service Management,2018,15(4):1235-1248. |
|