计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240300148-6.doi: 10.11896/jsjkx.240300148
项恒, 杨明友, 李猛
XIANG Heng, YANG Mingyou, LI Meng
摘要: 针对当前国际民航组织对数字航行通告研究仅考虑对文本航行通告环境兼容,而未考虑对数字航行通告环境兼容的问题,提出一种基于BiLSTM-CRF的航行通告命名实体识别模型,以实现文本航行通告中相关实体的自动识别,并为转换数字航行通告提供所需的基本数据。通过构建航行通告语料标记数据集对LSTM,BiLSTM,BiLSTM-CRF 3种模型进行对比实验。实验结果显示,所提模型的精确率、召回率、F1值分别为95%,95%,95%,验证了其在航行通告领域的有效性,证明本研究可以有效识别航行通告中的重要实体信息。
中图分类号:
[1]CAAC.Specification for the Preparation and Issuance of CivilAviation NOTAMS [Z].2011:30P.;A4. [2]EUROCONTROL.Digital NOTAM Specification[EB/OL].[2024-03-15].https://ext.eurocontrol.int/aixm_confluence/display/DNOTAM/Digital+NOTAM+Specification. [3]GUO X Y,HE T T.Survey about Research on Information Extraction [J].Computer Science,2015,42(2):14-17,38. [4]GAO X,WANG S,ZHU J W,et al.Overview of Named Entity Recognition Tasks [J].Computer Science,2023,50(S1):26-33. [5]RABINER L R.A tutorial on hidden Markov models and selec-ted applications in speech recognition [J].Proc IEEE,1989,77. [6]PIETRA S D,PIETRA V D,MERCER R L,et al.Adaptive language modeling using minimum discriminant estimation[C]//IEEE International Conference on Acoustics.IEEE,1992:633-636. [7]LAFFERTY J,MCCALLUM A,PEREIRA F C N.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proceedings of the 18th International Conference on Machine Learning(ICML 2001).2001:282-289. [8]CHEN P H,LIN C J,SCHLKOPF B.A Tutorial on v-support vector machines [J].Applied Stochastic Models in Business and Industry,2005,21(2):111-136. [9]BIKEL D M,SCHWARTZ R,WEISCHEDEL R M.An Algorithm that Learns What's in a Name [J].Machine Learning,1999,34:211-231. [10]BORTHWICK A,STERLING J,AGICHTEIN E,et al.Description of the MENE named entity system as used in MUC-7[C]//Proceedings of the 7th Message Understanding Conference,Virginia.Stroudsburg:ACL,1998:1-7. [11]MCCALLUM A,LI W.Early Results for Named Entity Recognition with Conditional Random Fields,Feature Induction and Web-Enhanced Lexicons [J].Association for Computational Linguistics,2003,4:188-191. [12]TAKEUCHI K,COLLIER N.Use of Support vector machinesin extended named entity recognition[C]//Proceedings of the 6th Conference on Natural Language Learning,Taipei,China,Aug 24-Sep 1,2002.Stroudsburg:ACL,2002:184-190. [13]COLLOBERT R,WESTON J,BOTTOU L,et al.Natural Language Processing(almost) from Scratch [J].Journal of Machine Learning Research,2011,12(1):2493-2537. [14]HUANG Z,XU W,YU K.Bidirectional LSTM-CRF Models forSequence Tagging [J].arXiv:1508.01991,2015. [15]CETOLI A,BRAGAGLIA S,O'HARNEY A D,et al.Graph convolutional networks for named entity recognition[C]//Proceedings of the 16th International Workshop on Treebanks and Linguistic Theories.Stroudsburg:ACL,2018:37-45. [16]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding [C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).2019:4171-4186. [17]GUO Z X,DENG X L.Intelligent Identification Method of LegalCase Entity Based on BERT-BiLSTM-CRF [J].Journal of Beijing University of Posts and Telecommunications,2021,44(4):129-134. [18]LIU H,ZHANG Z X,WANG Y F.A Review on Main Optimization Methods of BERT [J].Data Analysis and Knowledge Discovery,2021,5(1):3-15. [19]LI H F,ZENG C,HU H Q,etal.Research on Text Classification of NOTAM Based on Machine Learning [J].Journal of Ci-vil Aviation,2022,6(4):6-9. [20]XIANG H,ZHANG C,LI M.Identification method for non-normative NOTAM based on NLP [J].Journal of Civil Aviation University of China,2022,40(2):14-18. [21]PAN Z X,LUO Y H,LI RZ.Research on Extraction of Notam Information [J].Modern Computer,2022,28(2):82-87. |
|