计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 396-402.doi: 10.11896/jsjkx.230500032
陈思雨1, 马海龙2, 张建辉3
CHEN Siyu1, MA Hailong2, ZHANG Jianhui3
摘要: 针对传统加密流量分类方法准确率低、利用流量载荷会侵犯用户隐私,以及泛化能力弱的问题,提出一种基于注意力机制的CNN和BiGRU(CNN-AttBiGRU)的加密流量分类方法,可以同时适用于常规加密和VPN、Tor加密流量。该方法基于包大小、包到达时间以及包到达方向将流量转化为直观的图片,为提高模型准确率,使用CNN提取流量图片的空间特征,同时设计BiGRU和Self-attention模型提取时间特征,充分利用流量图片的时间和空间特征,可按照流量类别、加密技术和应用类型对流量进行不同层面的分类。该方法对加密流量类别分类的平均准确率达95.2%,较以往提升11.65%;对加密技术分类的准确率达95.5%,较以往提升7.1%;对流量所使用的应用程序分类的准确率达99.8%,较以往提升11.03%。实验结果表明,CNN-AttBiGRU方法的泛化能力强,并且其仅利用加密流量的部分统计特征,有效地保护了用户隐私,同时取得了高准确率。
中图分类号:
[1]WANG Z,FOK K W,THING V L L.Machine learning for encrypted malicious traffic detection:Approaches,datasets and comparative study[J].Computers & Security,2022,113:102542. [2]REZAEI S,LIU X.Deep learning for encrypted traffic classification:An overview[J].IEEE Communications Magazine,2019,57(5):76-81. [3]ZENG Y,GU H,WEI W,et al.Deep-Full-Range:a deep lear-ning based network encrypted traffic classification and intrusion detection framework[J].IEEE Access,2019,7:45182-45190. [4]DRAPER-GIL G,LASHKARI A H,MAMUN M S I,et al.Characterization of encrypted and vpn traffic using time-related[C]//Proceedings of the 2nd International Conference on Information Systems Security and Privacy(ICISSP).2016:407-414. [5]LASHKARI A H,DRAPER-GIL G,MAMUN M S I,et al.Characterization of tor traffic using time based features[C]//ICISSP.2017:253-262. [6]WANG Y,ZHOU W Y,FENG H,et al.A deep convolutional neural network-based approach for network traffic classification[J].Journal on Communications,201839(1):14-23. [7]CHENG J,WU Y,E Y P,et al.MATEC:A lightweight neural network for online encrypted traffic classification[J].Computer Networks,2021,199:108472. [8]ACETO G,CIUONZO D,MONTIERI A,et al.Mobile encryp-ted traffic classification using deep learning:Experimental evaluation,lessons learned,and challenges[J].IEEE Transactions on Network and Service Management,2019,16(2):445-458. [9]LIU C,HE L,XIONG G,et al.Fs-net:A flow sequence network for encrypted traffic classification[C]//IEEE INFOCOM 2019-IEEE Conference on Computer Communications.IEEE,2019:1171-1179. [10]HE Y,LI W.Image-based encrypted traffic classification with convolution neural networks[C]//2020 IEEE Fifth Interna-tional Conference on Data Science in Cyberspace(DSC).IEEE,2020:271-278. [11]ZHANG S L,CHENG G,ZHANG W C.An improved deep convolutional neural network-based method for network traffic classification[J].Chinese Science:Information Science,2021,51(1):56-74. [12]LOTFOLLAHI M,JAFARI SIAVOSHANI M,SHIRALIHOSSEIN ZADE R,et al.Deep packet:A novel approach for encrypted traffic classification using deep learning[J].Soft Computing,2020,24(3):1999-2012. [13]XIE J N,MA C H,LI Z Y,et al.An encrypted traffic classification method based on convolutional neural networks[J].Journal of Network and Information Security,2022,8(6):84-91. [14]SHAPIRA T,SHAVITT Y.FlowPic:A generic representation for encrypted traffic classification and applications identification[J].IEEE Transactions on Network and Service Management,2021,18(2):1218-1232. [15]GUO L,WU Q,LIU S,et al.Deep learning-based real-time VPN encrypted traffic identification methods[J].Journal of Real-Time Image Processing,2020,17:103-114. [16]DODIA P,ALSABAH M,ALRAWI O,et al.Exposing the Rat in the Tunnel:Using Traffic Analysis for Tor-based Malware Detection[C]//Proceedings of the 2022 ACM SIGSACConfe-rence on Computer and Communications Security.2022:875-889. [17]CHEN M H,ZHU Y F,LU B,et al.Attention-CNN-based application type identification for encrypted traffic[J].Computer Science,2021,48(4):325-332. [18]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [19]YAO H,LIU C,ZHANG P,et al.Identification of encryptedtraffic through attention mechanism based long short term memory[J].IEEE Transactions on Big Data,2019,8(1):241-252. [20]LIU X,YOU J,WU Y,et al.Attention-based bidirectional GRU networks for efficient HTTPS traffic classification[J].Information Sciences,2020,541:297-315. [21]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. |
|