计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240300161-5.doi: 10.11896/jsjkx.240300161

• 智能计算 • 上一篇    下一篇

伪布尔约束的一种模型计数方法

郑苏豪1, 牛秦洲1, 陶小梅2   

  1. 1 桂林理工大学信息科学与工程学院 广西 桂林 541006
    2 广西师范大学计算机科学与工程学院、软件学院 广西 桂林 541006
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 牛秦洲(niuqinzhou@163.com)
  • 作者简介:(1659792900@qq.com)
  • 基金资助:
    国家自然科学基金(61906051)

Model Counting Method for Pseudo-Boolean Constraints

ZHENG Suhao1, NIU Qinzhou1, TAO Xiaomei2   

  1. 1 College of Information Science and Engineering,Guilin University of Technology,Guilin,Guangxi 541006,China
    2 School of Computer Science and Engineering & School of Software,Guangxi Normal University,Guilin,Guangxi 541006,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:ZHENG Suhao,born in 1999,postgra-duate.His main research interests include SAT problem algorithms and theo-ry,and so on.
    NIU Qinzhou,born in 1956,Ph.D,professor.His main research interests include SAT problem algorithms,and computer network.
  • Supported by:
    National Natural Science Foundation of China(61906051).

摘要: 伪布尔约束问题是一类与布尔约束问题相似的组合优化难题。解决这类问题的核心在于以不同的数学形式对伪布尔约束进行编码,例如线性规划、整数规划以及其他形式的组合优化。当前流行的解决方法是将问题转化为布尔公式,然后运用冲突导向的子句学习(CDCL)类SAT求解器对这些布尔公式进行求解。提出了一种新的方法来解决伪布尔约束问题中的模型计数问题。首先,介绍了知识编译和扩展规则的相关概念,随后详细阐述了如何利用知识编译将伪布尔约束问题转化为二元决策图(BDD),并着重探讨了BDD结构的特性,最后采用基于扩展规则的模型计数方法来处理伪布尔约束问题中的模型计数问题。实验结果表明,该方法在处理互补因子较高的子句集时表现出更为优越的性能。

关键词: 伪布尔约束, SAT问题, 模型计数, 知识编译, 子句

Abstract: Pseudo-Boolean constraints problem is a kind of combinatorial optimization problem similar to the Boolean constraints problem.The core of solving such problems lies in encoding Pseudo-Boolean constraints in different mathematical forms,such as linear programming,integer programming,and other forms of combinatorial optimization.The current popular solution is to convert the problem into Boolean formulas,and then use the conflict-oriented clause learning(CDCL) class SAT solver to solve these Boolean formulas.This paper proposes a new method to solve the model counting problem in the Pseudo-Boolean constraints problem.Firstly,the related concepts of knowledge compilation and extension rules are introduced,and then how to transform Pseudo-Boolean constraints problem into binary decision diagram(BDD) by knowledge compilation is discussed in detail,and the characteristics of BDD structure are discussed emphatically.Finally,the model counting method based on extension rules isadoptedto deal with the model counting problem in Pseudo-Boolean constraints problem.Experimental results show that the proposed method has better performance when dealing with clauses with higher complementarity factors.

Key words: Pseudo-Boolean constraints, SAT problem, Model counting, Knowledge compilation, Clause

中图分类号: 

  • TP301
[1]EÉN N,SÖRENSSON N.Translating pseudo-boolean con-straints into SAT[J].Journal on Satisfiability,Boolean Mode-ling and Computation,2006,2(1/2/3/4):1-26.
[2]ABÍO I,NIEUWENHUIS R,OLIVERAS A,et al.A new look at BDDs for pseudo-Boolean constraints[J].Journal of Artificial Intelligence Research,2012,45:443-480.
[3]BOFILL M,COLL J,NIGHTINGALE P,et al.SAT encodings for Pseudo-Boolean constraints together with at-most-one constraints[J].Artificial Intelligence,2022,302:103604.
[4]DING Z Y.Research and Implementation of Applying LinearAlgebra to Solve Satisfiability Problem[D].Guangzhou:Sun Yat-sen University,2014.
[5]FANG C,LIU J.A linear algebra formulation for boolean satis-fiability testing[J].arXiv:1701.02401,2017.
[6]HAI L,JIGUI S,YIMIN Z.Theorem proving based on the extension rule[J].Journal of Automated Reasoning,2003,31:11-21.
[7]YIN M H,LIN H,SUN J G.Solving #SAT using extensionrules[J].Journal of Software,2009,20(7):1714-1725.
[8]JHA A,SUCIU D.Knowledge compilation meets database theory:compiling queries to decision diagrams[C]//Proceedings of the 14th International Conference on Database Theory.2011:162-173.
[9]INOUE K.Evaluating abductive hypotheses using an EM algorithm on BDDs[C]//Proc.IJCAI-09.2009:810-815.
[10]DARWICHE A.Decomposable negation normal form[J].Journal of the ACM(JACM),2001,48(4):608-647.
[11]GU W X.Knowledge Compilation Survey[J].Computer Scien-ce,2010,37(7):7.
[12]ZHAO X W.Research of the Knowledge compilation and Contingent Flexible Planning[D].Changchun:Northeast Normal University,2010.
[13]LYU S,ZHANG T,WANG Q,et al.Two Novel AlgorithmsBased on Extension Rule for Solving# SAT Problem[J].Journal of Northeastern University(Natural Science),2019,40(5):630.
[14]LATOUR A L D,SEN A,MEEL K S.Solving the identifying code set problem with grouped independent support[J].arXiv:2306.15693,2023.
[15]AUSIELLO G,CRESCENZI P,GAMBOSI G,et al.Complexity and approximation:Combinatorial optimization problems and their approximability properties[M].Springer Science & Business Media,2012.
[16]ROUGHGARDEN T.Algorithmic game theory[J].Communications of the ACM,2010,53(7):78-86.
[17]DUDEK J M,PHAN V H N,VARDI M Y.DPMC:weightedmodel counting by dynamic programming on projectjoin trees[C]//International Conference on Principles and Practice of Constraint Programming.Cham:Springer International Publi-shing,2020:211-230.
[18]SUZUKI R,HASHIMOTO K,SAKAI M.Improvement of Projected Model-Counting Solver with Component Decomposition Using SAT Solving in Components:JSAI Technical Report:SIG-FPAI[R].2017:31-36.
[19]PHILIPP T,STEINKE P.Pblib-a library for encoding pseudo-boolean constraints into cnf[C]//International Conference on Theory and Applications of Satisfiability Testing.Cham:SpringerInternational Publishing,2015:9-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!