计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231000069-9.doi: 10.11896/jsjkx.231000069
张昭昭1, 潘浩然1, 朱应钦2
ZHANG Zhaozhao1, PAN Haoran1, ZHU Yingqin2
摘要: 针对混沌时间序列的复杂性和非线性特点,提出了一种专注于此类挑战的新型神经网络模型,即注意力改进的动态自组织模块化神经网络模型(ADAMNN)。该模型基于分而治之的思想,通过注意力机制计算不同子网络与输入数据的相似度,并利用层次聚类自适应地划分子网络。随后,采用基于层次聚类的动态生长机制,对子网络簇进行增减,最后通过激活的子网络簇对输入样本进行在线学习;同时,结合传统的集成输出方法,提出了一种基于注意力机制的子网络加权集成输出方法。最终分别在Mackey-Glass时间序列、M-G快时变时间序列、非线性系统辨识、煤矿开采过程中在瓦斯浓度数据集上进行了实验,ADAMNN展现出了实时更新子网络中心、动态构建子网络簇的能力,而且与基于欧几里得空间的动态自适应模块化神经网络相比,预测准确度提高了约40%。
中图分类号:
[1]BALKISSOON S,FOX N,LUPO A,et al.Determining chaoticcharacteristics and forecasting tall tower wind speeds in Missouri using empirical dynamical modeling(EDM)[J].Renewable Energy,2021,170:1292-1307. [2]CHENG W,WANG Y,PENG Z,et al.High-efficiency chaotic time series prediction based on time convolution neural network[J].Chaos,Solitons & Fractals,2021,152:111304. [3]HAN M,ZHANG S,XU M,et al.Multivariate chaotic time se-ries online prediction based on improved kernel recursive least squares algorithm[J].IEEE Transactions on Cybernetics,2018,49(4):1160-1172. [4]BECKER S,HINTON G E.Self-organizing neural network that discovers surfaces in random-dot stereograms[J].Nature,1992.355(6356):161-163. [5]QIAO J F,AN R,HAN H G.Design of self-organizing RBF neural network based on relative contribution index[J].CAAI Transactions on Intelligent Systems,2018,13(2):159-167. [6]EL-SOUSY F F M,ABUHASEL K A.Adaptive nonlinear disturbance observer using a double-loop self-organizing recurrent wavelet neural network for a two-axis motion control system[J].IEEE Transactions on Industry Applications,2017,54(1):764-786. [7]LI W L,GAO H W,JI D X,et al.Optimization Method of Sea-bed Sediment Texture Feature Based on Genetic Algorithm[J].Computer Science,2016,43(Z6):130-133. [8]JACOBS R A,JORDAN M I,NOWLAN S J,et al.Adaptive Mixtures of Local Experts[J].Neural Computation,1991,3(1):79-87. [9]ZHANG Z Z,QIAO J F,YU W.Structure Design of Hierarchical Adaptive Modular Neural Network[J].Chinese Journal of Computers,2017,40(12):2827-2838. [10]TEREKHOV A V,MONTONE G,O'REGAN J K.Knowledge transfer in deep block-modular neural networks[C]//Biomime-tic and Biohybrid Systems:4th International Conference,Living Machines 2015,Barcelona,Spain.Springer International Publishing,2015:268-279. [11]WATANABE C,HIRAMATSU K,KASHINO K.Modular representation of layered neural networks[J].Neural Networks,2018,97:62-73. [12]PHAN K T,MAUL T H,VU T T.A parallel circuit approach for improving the speed and generalization properties of neural networks[C]//2015 11th International Conference on Natural Computation(ICNC).IEEE,2015:1-7. [13]ERREIRA M D F,CORRÊA D C,NONATO L G,et al.Designing architectures of convolutional neural networks to solve practical problems[J].Expert Systems with Applications,2018,94:205-217. [14]ZHANG Z Z.Design of dynamic adaptive modular neural network structure.Control and Decision,2014,29(1),64-70. [15]QIAO J,ZHANG Z,BO Y.An online self-adaptive modular neural network for time-varying systems[J].Neurocomputing,2014,125:7-16. [16]GUO X,LI W,QIAO J.An improved online adaptive modular neural network.Control and Decision,2020,35(7),1597-1605. [17]GUO X,LI W,QIAO J.A self-organizing modular neural network based on empirical mode decomposition with sliding window for time series prediction[J].Applied Soft Computing,2023:110559. [18]ZHANG Y,YANG Q.A survey on multi-task learning[J].IEEE Transactions on Knowledge and Data Engineering,2021,34(12):5586-5609. [19]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Advances in Neural Information Processing Systems,2017,30:6000-6010. [20]PHAM H,LUONG M T,MANNING C D.2015.Effective Approaches to Attention-based Neural Machine Translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.Lisbon,Portugal:Association for Computational Linguistics.2015:1412-1421. [21]MURTAGH F,LEGENDRE P.Ward's hierarchical agglomerative clustering method:which algorithms implement Ward's criterion?[J].Journal of classification,2014,31:274-295. [22]BALTRUŠAITIS T,AHUJA C,MORENCY L P.Multimodal machine learning:A survey and taxonomy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,41(2):423-443. [23]MACKEY M C,GLASS L.Oscillation,and chaos in physiological control systems[J].Science,1977,197(4300):287-289. [24]SU Y,YANG C,QIAO J.Self-organizing pipelined recurrentwavelet neural network for time series prediction[J].Expert Systems with Applications,2023,214:119215. [25]LAI X W,ZHENG W B,WU Y Q,et al.Task Collaborative Process Network Model and Time Analysis of Mine Accident Emergency Rescue Digital Plan[J].Computer Science,2021,48(S1):596-602. [26]WANG E Y,ZHANG G R,ZHANG C L,et al.Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J].Journal of China Coal Society,2022,47(1):297-322. |
|