计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200066-7.doi: 10.11896/jsjkx.231200066

• 智能计算 • 上一篇    下一篇

融合微分熵的高泛化能力脑电情绪识别模型

李争平, 李汉文, 王立军   

  1. 北方工业大学信息学院 北京 100144
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 李汉文(lhw_13171582467@163.com)
  • 作者简介:(lizp@ncut.edu.cn)
  • 基金资助:
    国家重点研发计划课题(2020YFC0811004)

High-generalization Ability EEG Emotion Recognition Model with Differential Entropy

LI Zhengping, LI Hanwen, WANG Lijun   

  1. School of Information,North China University of Technology,Beijing 100144,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:LI Zhengping,born in 1975,Ph. D,associate professor.His main research in terests include media access control technology,wireless positioning technology and the application of virtual reality in medical rescue.
    LI Hanwen,born in 2000,postgraduate.His main research interests include deep learning,emotion recognition and analog storage and computing integraedchip design.
  • Supported by:
    National Key R&D Program of China(2020YFC0811004).

摘要: 深度学习的出现,使得脑电信号研究得到进一步发展。常用的基于深度学习对情绪分类的方法有人工神经网络(Artificial Neural Network,ANN)与深度学习(Deep Learning,DL)等。但脑电信号属于有限样本数据,对于深度学习这类需要大量数据驱动训练从而完成分类任务的网络来说,如何在有限的数据数量下提升分类任务的效果和泛化性能是一个研究重点。针对脑电研究中真实环境对脑电信号的影响以及神经网络模型泛化性问题,充分挖掘脑电信号包含的信息,提出了同时考虑原始脑电信号和DE特征的深度学习模型,并设计实验的数据采集过程和处理过程。在DEAP数据集、SEED数据集和实验采集的数据上进行实验,评估所搭建网络的性能效果和泛化能力,探索深度学习网络在脑电信号上的情绪分类关联关系。使用本文构建的网络模型与特征处理办法,在SEED数据集的情绪三分类上获得了85.62%的准确率,在DEAP数据集原始脑电的效价和唤醒两个维度的情绪二分类上分别获得了59.38%和61.70%的准确率。

关键词: 情绪识别, 情绪分类, 脑电信号, 微分熵(DE), 深度学习

Abstract: With the advent of deep learning,the study of EEG signals has been further developed,and the commonly used me-thods for classification of emotions based on deep learning include artificial neural network(ANN) and deep learning(DL).How-ever,EEG signals are limited sample data,and for networks such as deep learning,which require a large amount of data-driven training to complete classification tasks,how to improve the effect and generalization performance of classification tasks with a limited amount of data is a research focus.In order to solve the problem of the influence of the real environment on the EEG signal and the generalization of the neural network model in EEG research,this paper fully excavates the information contained in the EEG signal,proposes a deep learning model that considers both the original EEG signal and the DE feature,and designs the data acquisition process and processing process of the experiment.Experiments are carried out on DEAP dataset,SEED dataset and experimental data to evaluate the performance effect and generalization ability of the built network,and to explore the correlation between deep learning networks in emotion classification on EEG signals.The network model and feature processing method constructed in this paper obtain an accuracy of 85.62% in the sentiment tri-classification on the SEED dataset.The accuracy of 59.38% and 61.70% is obtained in the emotional binary classification of the two dimensions of valence and arousal of the original EEG on the DEAP dataset,respectively.

Key words: Emotion recognition, Emotion classification, Electroencephalogram(EEG) signals, Differential entropy(DE), Deep learning

中图分类号: 

  • TP183
[1]KAMBLE K,SENGUPTA J.A comprehensive survey on emotion recognition based on electroencephalograph(EEG) signals[J].Multimedia Tools and Applications,2023,82:1-36.
[2]PATLAR AKBULUT F.Hybrid deep convolutional model-based emotion recognition using multiple physiological signals[J].Computer Methods in Biomechanics and Biomedical Engineering,2022,25(15):1678-1690.
[3]YUVARAJ R,THAGAVEL P,THOMAS J,et al.Comprehen-sive Analysis of Feature Extraction Methods for Emotion Re-cognition from Multichannel EEG Recordings[J].Sensors,2023,23(2):915.
[4]DING Y,ROBINSON N,ZHANG S,et al.Tsception:Capturingtemporal dynamics and spatial asymmetry from EEG for emotion recognition[J].IEEE Transactions on Affective Computing,2023,14(3):1-13.
[5]CUNNINGHAM P,DELANY S J.k-Nearest neighbour classi-fiers-A Tutorial[J].ACM computing surveys(CSUR),2021,54(6):1-25.
[6]THARWAT A,GABER T,IBRAHIM A,et al.Linear discrimi-nant analysis:A detailed tutorial[J].AI Communications,2017,30(2):169-190.
[7]NOBLEW S.What is a support vector machine?[J].Nature Biotechnology,2006,24(12):1565-1567.
[8]RISHI.An empirical study of the naive Bayes classifier[C]//Workshop on Empirical Methods in Artificial Intelligence(IJCAI 2001).2001:41-46.
[9]AHMED M Z I,SINHA N.EEG-based emotion classificationusing LSTM under new paradigm[J].Biomedical Physics & Engineering Express,2021,7(6):065018.
[10]LI X,SONG D,ZHANG P,et al.Emotion recognition frommulti-channel EEG data through convolutional recurrent neural network[C]//2016 IEEE International Conference on Bioinformatics and Biomedicine(BIBM).IEEE,2016:352-359.
[11]YANG Y,WU Q,QIU M,et al.Emotion recognition frommulti-channel EEG through parallel convolutional recurrent neural network[C]//2018 International Joint Conference on Neural Networks(IJCNN).IEEE,2018:1-7.
[12]TAO W,LI C,SONG R,et al.EEG-based emotion recognitionvia channel-wise attention and self attention[J].IEEE Transactions on Affective Computing,2023,14(1):382-393.
[13]WANG F,ZHONG S,PENG J,et al.Data augmentation for EEG-based emotion recognition with deep convolutional neural networks[C]//MultiMedia Modeling:24th International Conference(MMM 2018).Bangkok,Thailand,Part II 24.Springer International Publishing,2018:82-93.
[14]YANG Y,WU Q,QIN M,et al.Emotion recognition frommulti-channel EEG through parallel convolutional recurrent neural network[C]//2018 International Joint Conference on Neural Networks(IJCNN).IEEE,2018:1-7.
[15]ZHENG W L,LUB L.Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J].IEEE Transactions on Autonomous Mental Deve-lopment,2015,7(3):162-175.
[16]ULLAH I,HUSSAIN M,ABOALSAMH H.An automatedsystem for epilepsy detection using EEG brain signals based on deep learning approach[J].Expert Systems with Applications,2018,107:61-71.
[17]BIGDELY-SHAMLO N,TOURYAN J,OJEDA A,et al.Automated EEG mega-analysis I:Spectral and amplitude characteristics across studies[J].NeuroImage,2020,207:116361.
[18]WANG X Q.Emotion recognition based on multiple features ofEEG signals[D].Nanjing:Nanjing University of Posts and Telecommunications,2020.
[19]LI J Q,LI H F,BAI Y F,et al.Research on Automatic Identification and Removal Method of Ocular Electrographic Artifacts in EEG Signals[J].Computer Engineering and Applications,2018,54(13):148-152,167
[20]YANG Y,WU Q M J,ZHENG W L,et al.EEG-based emotion recognition using hierarchical network with subnetwork nodes[J].IEEE Transactions on Cognitive and Developmental Systems,2017,10(2):408-419.
[21]ZHENG W L,LU B L.Investigating critical frequency bandsand channels for EEG-based emotion recognition with deep neural networks[J].IEEE Transactions on autonomous mental development,2015,7(3):162-175.
[22]HU J,SHEN L,ALBANIE S,et al.Squeeze-and-Excitation Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,42(8):1-1.
[23]DING Y,ROBINSON N,ZHANG S,et al.Tsception:Capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition[J].IEEE Transactions on Affective Computing,2023,14(3):2238-2250.
[24]PAN C,SHI C,MU H,et al.EEG-based emotion recognitionusing logistic regression with Gaussian kernel and Laplacian prior and investigation of critical frequency bands[J].Applied Sciences,2020,10(5):1619.
[25]MAHADEVASWAMY U B,SWATHI P.Sentiment analysisusing bidirectional LSTM network[J].Procedia Computer Science,2023,218:45-56.
[26]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2018:7132-7141.
[27]JAKKULA V.Tutorial on support vector machine(svm)[J].School of EECS,Washington State University,2006,37(2.5):3.
[28]ZHENG W.Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis[J].IEEE Transactions on Cognitive and Developmental Systems,2016,9(3):281-290.
[29]WEI C,CHEN L,SONG Z,et al.EEG-based emotion recognition using simple recurrent units network and ensemble learning[J].Biomedical Signal Processing and Control,2020,58:101756.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!