计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200162-8.doi: 10.11896/jsjkx.231200162

• 图像处理&多媒体技术 • 上一篇    下一篇

基于轻量化多尺度融合注意力网络的古代壁画脱落区域自动标定

王信超, 余映, 陈安, 赵辉荣   

  1. 云南大学信息学院 昆明 650500
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 余映(yuying.mail@163.com)
  • 作者简介:(wxcbjc@163.com)
  • 基金资助:
    国家自然科学基金(62166048,61263048);云南省应用研究计划(2018FB102)

Integration of Multi-scale and Attention Mechanism for Ancient Mural Detachment Area Localization

WANG Xinchao, YU Ying, CHEN An, ZHAO Huirong   

  1. School of Information Science and Engineering,Yunnan University,Kunming 650500,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:WANG Xinchao,born in 1998,postgraduate,is a member of CCF(No.R9235G).His main research interests include computer vision and deep lear-ning.
    YU Ying,born in 1977,Ph.D,associate professor.His main research interests include image and vision,artificial neural network.
  • Supported by:
    National Natural Science Foundation of China(62166048,61263048)and Yunnan Provincial Applied Research Program(2018FB102).

摘要: 针对古代壁画脱落区域难以准确自动标定的问题,文中提出了一种基于多尺度融合注意力网络的轻量化网络模型。首先,提出多尺度融合注意力模块使网络能够学习到更多不同尺度的特征,并重点关注其中更重要的特征,从而提高标定壁画脱落区域的准确率。在提出的多尺度融合注意力模块中采用了深度可分离卷积,使网络模型更加轻量化。其次,采用交叉熵损失与Dice得分相结合的方式作为损失函数,并采用Adam优化器进一步提高标定壁画脱落区域的准确率。此外,构建了敦煌莫高窟壁画和云南石屏罗色庙壁画数据集,并对其脱落区域进行了人工标定。实验结果表明,所提网络模型能够准确地标定出古代壁画中的脱落病害区域。与现有深度学习方法进行对比,所提模型的参数量显著减少,且在主观视觉质量、客观评价指标以及泛化性能上都有更好的表现。

关键词: 壁画脱落, U型网络, 多尺度, 注意力机制, 深度学习, 轻量化

Abstract: In response to the challenging problem of accurately automating the localization of peeling areas in ancient murals,this paper proposes a lightweight network model based on a multi-scale fusion attention network.Firstly,a multi-scale fusion attention module is introduced to enable the network to learn features at different scales,with a focus on the most critical features,thus improving the accuracy of mural missing area localization.Deep separable convolutions are employed in the proposed multi-scale fusion attention module to make the network model more lightweight.Secondly,a combination of cross-entropy loss and Dice score is used as the loss function,and the Adam optimizer is applied to further enhance the accuracy of mural missing area localization.Additionally,datasets of Dunhuang Mogao Grottoes murals and Yunnan Shiping Luose Temple murals are constructed,and their peeling areas are manually annotated.Experimental results demonstrate that the proposed network model accurately localizes peeling regions in ancient murals.In comparison with existing deep learning methods,this model significantly reduces the number of parameters and exhibits better performance in terms of subjective visual quality,objective evaluation metrics,and generalization capabilities.

Key words: Mural damage, U-Net, Multi-scale, Attention mechanism, Deep learning, Lightweight

中图分类号: 

  • TP391
[1]ROSA DE A,BONACEHI A M,CAPPELLINI V,et al.Image segmentation and region filling for virtual restoration of artworks [C]//Proceedings 2001 International Conference on Image Processing.Thessaloniki:IEEE,2001:562-565.
[2]LIU J M.Research on the protection and intelligent restoration technology of ancient mural images [D].Hangzhou:Zhejiang University,2010.
[3]TURAKHIA N,SHAH R,JOSHI M.Automatic crack detec-tion in heritage site images for image inpainting [C]//Proceedings of the Eighth Indian Conference on Computer Vision,Graphics and Image Processing.Mumbai:ACM,2012:1-8.
[4]WU M,WANG H Q,LI W Y.Research on multi-scale detection and image inpainting of Tang dynastytomb murals [J].Computer Engineering and Applications,2016,52(11):169-174.
[5]LI C Y,WANG H Q,WU M,et al.Automatic recognition and virtual restoration of mud spot disease of Tang dynasty tomb murals image [J].Computer Engineering and Applications,2016,52(15):233-236.
[6]CAO J F,LI Y F,CUI H Y,et al.The Application of Improved Region Growing Algorithm for the Automatic Calibration of Shedding Disease [J].Journal of Xinjiang University(Natural Science Edition),2018,35(4):429-436.
[7]DENG X,YU Y.Automatic calibration of crack and flaking dis-eases in ancient temple murals [J].Heritage Science,2022,10(1):163.
[8]HUANG R,FENG W,FAN M,et al.Learning multi-path CNNfor mural deterioration detection [J].Journal of Ambient Intelligence and Humanized Computing,2020,11:3101-3108.
[9]LIN Y,XU C,LYU S.Disease Regions Recognition on MuralHyperspectral Images Combined by MNF and BP Neural Network [C]//Journal of Physics Conference Series.Qingdao:IOP,2019:104-110.
[10]LÜ S Q,WANG S H,HOU M L,et al.Extraction of mural paint loss diseases based on improved U-Net [J].Geomatics World,2022,29(1):69-74.
[11]SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation [J].IEEE Trans Pattern Anal Mach Intell,2017,39(4):640-651.
[12]RONNEBERGER O,FISCHER P,BROX T.U-Net:convolu-tional networks for biomedical image segmentation [C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Inter-vention.Munich:Springer,2015:234-241.
[13]ALOM M Z,HASAN M,YAKOPCIC C,et al.Recurrent residual convolutional neural network based on u-net(r2u-net)for medical image segmentation [EB/OL].(2018-02-20)[2018-05-29].https://arxiv.org/abs/1802.06955.
[14]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention u-net:Learning where to look for the pancreas [EB/OL].(2018-04-11)[2018-05-20].https://arxiv.org/abs/1804.03999.
[15]ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al.Unet++:A nested u-net architecture for medical image segmentation [C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support Cham.Springer,2018:3-11.
[16]CHEN J,LU Y,YU Q,et al.Transunet:Transformers makestrong encoders for medical image segmentation [EB/OL].(2021-02-18)[2021-02-18].https://arxiv.org/abs/2102.04306.
[17]CAO H,WANG Y,CHEN J,et al.Swin-unet:Unet-like puretransformer for medical image segmentation [C]//European Conference on Computer Vision.Cham:Springer,2022:205-218.
[18]KIM N,KIM D,LAN C,et al.Restr:Convolution-free referringimage segmentation using transformers [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:18145-18154.
[19]RU L,ZHAN Y,YU B,et al.Learning affinity from attention:End-to-end weakly-supervised semantic segmentation with transformers [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:16846-16855.
[20]ZHANG J,YANG K,MA C,et al.Bending reality:Distortion-aware transformers for adapting to panoramic semantic segmentation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:16917-16927.
[21]ZHANG H,LI F,XU H,et al.MP-Former:Mask-piloted transformer for image segmentation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver:IEEE,2023:18074-18083.
[22]ZHANG C,BENGIO S,HARDT M,et al.Understanding deep learning(still)requires rethinking generalization[J].Communications of the ACM,2021,64(3):107-115.
[23]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module [C]//Proceedings of the European Conference on Computer Vision.Cham:Springer,2018:3-19.
[24]CHOLLET F.Xception:Deep learning with depthwise separable convolutions [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:1251-1258.
[25]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:A deep convolutional encoder-decoder architecture for image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
[26]CHEN G P,LI L,DAI Y,et al.NU-net:An unpretentious nested U-net for breast tumor segmentation [EB/OL].(2022-09-15)[2022-12-13].https://arxiv.org/abs/2209.07193
[27]PASZKE A,CHAURASIA A,KIM S,et al.Enet:A deep neural network architecture for real-time semantic segmentation[J].arXiv:1606.02147,2016.
[28]DINH B D,NGUYEN T T,TRAN T T,et al.1M parameters are enough? A lightweight CNN-based model for medical image segmentation[C]//2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference(APSIPA ASC).IEEE,2023:1279-1284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!