计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240400039-4.doi: 10.11896/jsjkx.240400039

• 图像处理&多媒体技术 • 上一篇    下一篇

段状管道轴向数据可视化的颜色映射函数优化方法研究与应用

罗月童, 赵东晟, 彭俊, 董子秋   

  1. 合肥工业大学计算机与信息学院 合肥 230009
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 罗月童(ytluo@hfut.edu.cn)
  • 基金资助:
    国家自然科学基金项目(61877016,61602146)

Research and Application of Color Mapping Function Optimization Method for SegmentedPipeline AxialData Visualization

LUO Yuetong, ZHAO Dongsheng, PENG Jun, DONG Ziqiu   

  1. School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230009,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:LUO Yuetong,born in 1978,Ph.D,professor,is a member of CCF(No.17933M).His main research interests include data visualization,computer-aided design,and computer graphics.
  • Supported by:
    National Natural Science Foundation of China(61877016,61602146).

摘要: 轴向数据经常以伪色彩方式在三维管道模型上进行可视化,颜色映射函数对可视化效果有决定性影响。虽然现在已有很多颜色映射函数,且其对符合常见分布特点的数据有较好效果,但它们对分布比较特殊的数据还是难以取得理想效果,所以人们针对各种特殊分布数据研究颜色映射函数。如果三维管道轴向数据由若干段组成,并且呈现“段内差别小,段间差距大”的分布特点,那么常见映射函数难以同时表现段内的细微差异和段之间的显著差别,从而影响可视化效果。针对这个问题,提出一种基于控制点的映射函数优化方法,以改善段状数据的可视化效果。实验分析使用了合成数据来验证方法的有效性,且使用了聚变堆冷却管的辐射量数据验证方法的有效性,两种数据均验证了该方法的有效性。

关键词: 科学可视化, 颜色映射, 控制点, 可视化优化

Abstract: Axial data is often visualized in a pseudo color manner on 3D pipeline models,and the color mapping function has a decisive impact on the visualization effect.Although there are now many color mapping functions that have good effects on data that conform to common distribution characteristics,it is still difficult to achieve ideal results on data with special distributions.Therefore,people are studying color mapping functions for various special distribution data.If the axial data of a three-dimensional pipeline is composed of several segments and presents a distribution characteristic of “small differences within segments and large differences between segments”,then common mapping functions are difficult to simultaneously represent subtle differences within segments and significant differences between segments,which affects the visualization effect.To address this issue,this article proposes a mapping function optimization method based on control points to improve the visualization effect of segmented data.Experimental analysis first verifies the effectiveness of the method using synthetic data; it also verifies the effectiveness of the method using radiation data from the cooling tubes of fusion reactors,and both types of data confirm the effectiveness of this method.

Key words: Scientific visualization, Color mapping, Control points, Visualization optimization

中图分类号: 

  • TP391.41
[1]WARE C.Color sequences for univariate maps:Theory,experiments and principles[J].IEEE Computer Graphics and Applications,1988,8(5):41-49.
[2]ROGOWITZ B E,TREINISH L A,BRYSON S.How not to lie with visualization[J].Computers in physics,1996,10(3):268-273.
[3]SAMSEL F,WOLFRAM P,BARES A,et al.Colormapping resources and strategies for organized intuitive environmental visualization[J].Environmental Earth Sciences,2019,78:1-12.
[4]BUJACK R,TURTON T L,SAMSEL F,et al.The good,the bad,and the ugly:A theoretical framework for the assessment of continuous colormaps[J].IEEE Transactions on Visualization and Computer Graphics,2017,24(1):923-933.
[5]BREWER C A.Color use guidelines for mapping [J].Visualization in modern cartography,1994,1(7):123-148.
[6]MITTELSTÄDT S,JÄCKLE D,STOFFEL F,et al.Colorcat:Guided design of colormaps for combined analysis tasks [C]//Eurographics Conference on Visualization(Eurovis).2015 .
[7]SISNEROS R,RAJI M,VAN MOER M W,et al.Chasing rainbows:A color-theoretic framework for improving and preserving bad colormaps [C]//ISVC.Las Vegas,NV,USA,2016:391-402.
[8]NUÑEZ J R,ANDERTON C R,RENSLOW R S.Optimizingcolormaps with consideration for color vision deficiency to enable accurate interpretation of scientific data [J].PloS one,2018,13(7):199-213.
[9]SILVA S,SANTOS B S,MADEIRA J.Using color in visualization:A survey[J].Computers & Graphics,2011,35(2):320-333.
[10]BERNARD J,STEIGER M,MITTELSTÄDT S,et al.A survey and task-based quality assessment of static 2D colormaps[C]//Visualization and Data Analysis 2015.SPIE,2015:247-262.
[11]ZHOU L,HANSEN C D.A survey of colormaps in visualization[J].IEEE Transactions on Visualization and Computer Graphi-cs,2015,22(8):2051-2069.
[12]SCHULZE-WOLLGAST P,TOMINSKI C,SCHUMANN H.Enhancing visual exploration by appropriate color coding[C]//International Conference in Central Europe on Computer Graphics and Visualization.2005:203-210.
[13]TOMINSKI C,FUCHS G,SCHUMANN H.Task-driven color coding[C]//2008 12th International Conference Information Visualisation.IEEE,2008:373-380.
[14]ZENG Q,WANG Y,ZHANG J,et al.Data-driven colormap optimization for 2d scalar field visualization[C]//2019 IEEE Visua-lization Conference(VIS).IEEE,2019:266-270.
[15]PHILLIPS G M.Interpolation and approximation by polyno-mials[M].Springer Science & Business Media,2006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!