计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231000034-6.doi: 10.11896/jsjkx.231000034
周颜林1,2, 邬开俊1, 梅源1, 田彬1, 俞天秀2
ZHOU Yanlin1,2, WU Kaijun1, MEI Yuan1, TIAN Bin1, YU Tianxiu2
摘要: 敦煌壁画因其极高的艺术价值、历史价值、研究价值而备受关注。在壁画文创研发中,壁画元素检测扮演了一个十分重要的角色。但是,受到壁画脱落、颜料褪色、病虫害破坏、元素体量差异大等因素的影响,给壁画元素的检测工作带来了极大的困扰。为此,文中基于Yolov8算法进行了改进拓展工作并将其引入壁画元素的检测任务。具体来说,考虑到部分元素特征不明显的问题,设计了改进的SPPCSPC模块以增强模型的特征感知能力,扩大模型的感受野;考虑到元素体量差异巨大、元素风格多变的问题,在C2f模块末端引入CoordAtt注意力机制以增强网络对局部及非显著信息的关注能力。在敦煌壁画元素检测任务上,相比5项前沿检测算法,所提算法取得了先进的壁画原始检测性能。相比Yolov8基线算法取得了2.2%@mAP的性能提升,尤其是在main_buddha类别上提升了12.2%@mAP的检测性能。所提方法有效支撑了敦煌壁画的后续相关研究工作。
中图分类号:
[1]WU J.Digital Development of mural cultural heritage-A case study of Dunhuang Mogao Grottoes[J].China Cultural Heritage,2016(2):34-38. [2]SHEN J X,BAO M Y.Detection and Analysis of Grotto Mural Diseases Based on Improved YOLOv4[J].Journal of Shanxi Datong University(Natural Science Edition),2023,39(2):15-17,22. [3]DONG Y X.Research on Automatic and High Precision Detection of Mural Diseases Ingrottoes[D].Beijing:Beijing University of Civil Engineering and Architecture,2022. [4]ZHANG Y E,WU L G.The Detection of Cave Mural Damage Based on Deep Learning[J].Yungang Research,2022,2(1):85-90. [5]LI X Y.Chronological Classification Anddamage Detection ofDunhuang Muralsbased on Deep Learning[D].Harbin:Harbin Institute of Technology,2019. [6]YU T,LIN C,ZHANG S,et al.Artificial Intelligence for Dunhuang Cultural Heritage Protection:The Project and the Dataset[J/OL].Internation al Journal of Computer Vision,2022.https://doi.org/10.1007/s11263-022-01665-x. [7]https://github.com/ultralytics/Yolov5. [8]https://github.com/ultralytics/ultralytics. [9]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[J].IEEE Computer Society,2014. [10]GIRSHICK R.Fast R-CNN[J].Computer Science,2015. [11]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[C]//NIPS.2016. [12]REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-Time Object Detection[C]//Computer Vision & Pattern Recognition.IEEE,2016. [13]REDMON J,FARHADI A.Yolo9000:Better,faster,stronger[C]//CVPR.2017. [14]REDMON J,FARHADI A.Yolov3:An incremental improve-ment[J].arXiv:1804.02767,2018. [15]BOCHKOVSKIY A,WANG C Y,LIAO M.Yolov4:Optimalspeed and accuracy of object detection[J].arXiv:2004.10934,2020. [16]LI C,LI L,JIANG H,et al.YOLOv6:A single-stage object detection framework for industrial applications[J].arXiv:2209.02976,2022. [17]WANG C Y,BOCHKOVSKIY A,LIAO H Y M.Yolov7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J].arXiv e-prints,2022. [18]CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with transformers[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK.Springer International Publishing,2020:213-229. [19]HU J,SHEN L,SUN G.Squeeze-and-Excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2018. [20]JADERBERG M,SIMONYAN K,ZISSERMAN A,et al.Spatial Transformer Networks[J].arXiv:1506.02025,2015. [21]LIU J,ZHANG W,TANG Y,et al.Residual feature aggregation network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:2359-2368. [22]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. [23]LIU Y,SHAO Z,HOFFMANN N.Global attention mecha-nism:Retain information to enhance channel-spatial interactions[J].arXiv:2112.05561,2021. [24]HOU Q,ZHOU D,FENG J.Coordinate Attention for Efficient Mobile Network Design[J].2021.DOI:10.48550/arXiv.2103.02907. [25]YANG L,ZHANG R Y,LI L,et al.Simam:A simple,parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning.PMLR,2021:11863-11874. [26]HE K,ZHANG X,REN S,et al.Spatial Pyramid Pooling inDeep Convolutional Networks for Visual Recognition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,37(9):1904-1916. [27]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [28]LIU J,LI C,LIANG F,et al.Inception convolution with efficient dilation search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:11486-11495. [29]LIU S,HUANG D.Receptive field block net for accurate and fast object detection[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:385-400. [30]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:1-9. [31]WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:A new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:390-391. |
|