计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231000042-5.doi: 10.11896/jsjkx.231000042
杨雨帆, 袁立明, 王珂, 李弘毅, 李奕璇, 姚雨佳, 王婧祎
YANG Yufan, YUAN Liming, WANG Ke, LI Hongyi, LI Yixuan, YAO Yujia, WANG Jingyi
摘要: 糖尿病视网膜病变是一种高风险的致盲性疾病,若能及早发现病变情况,则可对症治疗,减缓或阻止患者进一步的视力丧失。目前已经有一些利用深度学习进行糖尿病视网膜疾病检测的成功案例。然而,这些方法通常只考虑了图像中像素之间的空间关系,而没有考虑到图像深层特征之间的关系。为此,提出了一种基于图卷积网络的糖尿病视网膜病变分级模型,旨在帮助医生和研究人员在临床实践和科研工作中更好地进行糖尿病视网膜病变图像的分级和诊断。本模型主要通过图卷积网络去捕捉图像深层特征间所蕴含的重要的分级信息,获得具有更强语义信息的特征,并在此基础上构建一个双路分支网络。此外,为了更好地进行特征融合,采用自适应权重机制来进一步提高分级性能。实验结果表明,所提出的方法利用图卷积网络可以充分学习到图像深层特征间的关系,从而提高分级性能,其分类准确率在 APTOS2019 数据集上达到约 84.8%,在 Messidor-2 数据集上达到约 68%。
中图分类号:
[1]Fundus Diseases Group,Chinese Academy of Ophthalmology.Guidelines for Diabetic Retinopathy Clinical Diagnosis and Treatment in my country[J].Chinese Journal of Ophthalmology,2014,50(11):851-865. [2]FAN J,ZHANG R,LU M,et al.Application of deeplearningmethods in the diagnosis ofdiabetic retinopathy[J].Acta Automatica Sinica,2021,47(5):20. [3]ACHARYA U R,NG E,TAN J H,et al.An Integrated Index for the Identification of Diabetic Retinopathy Stages using Texture Parameters[J].Journal of Medical Systems,2012(3):36. [4]WONG T Y,SUN J,KAWASAKI R,et al.Guidelines on Diabetic Eye Care[J].Ophthalmology,2018(10):125. [5]LING Y,XI S.Correlation between diabetic retinopathy and dry eye[J].International Journal of Ophthalmology,2018,18(4):4. [6]CUN L,JACKEL L D,BOSER B,et al.Handwritten Digit Recognition:Applications of Neural Network Chips and Automatic Learning[J].IEEE Communications Magazine,1989,27(11):41-46. [7]SHI J,WANG R,ZHENG Y,et al.Cervical cell classificationwith graph convolutional network[J].Computer Methods and Programs in Biomedicine,2021,198:105807. [8]KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[J].arXiv:609.02907,2017. [9]SAJID S,HUSSAIN S,SARWAR A.Brain Tumor Detectionand Segmentation in MR Images Using Deep Learning[J].Arabian Journal for Science and Engineering,2019,44(11):9249-9261. [10]WONG J A H A.Algorithm AS 136:A K-Means Clustering Algorithm[J].Journal of the Royal Statistical Society,1979,28(1):100-108. [11]WANG S H,GOVINDARAJ V V,ÓRRIZ J M,et al.Covid-19 Classification by FGCNet with Deep Feature Fusion from Graph Convolutional Network and Convolutional Neural Network[J].Information Fusion,2020,67:208-229. [12]Asia Pacific Tele-Ophthalmology Society.APTOS 2019 blindness detection [EB/OL].https://kaggle.com/competitions/aptos2019-blindness-detection. [13]DECENCIÉRE E,ZHANG X,CAZUGUEL G,et al.Feedback on A Publicly Distributed Image Database:the Messidor Database[J].Image Analysis & Stereology,2014,33(3):231-234. [14]HUANG G,LIU Z,LAURENS V,et al.Densely ConnectedConvolutional Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.2017:2261-2269. [15]HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [16]KELLER J M,GRAY M R,GIVENS J A.A fuzzy K-nearestneighbor algorithm[J].IEEE Transactions on Systems Man & Cybernetics,1985,SMC-15(4):580-585. [17]DE BOER P T,KROESE D P,MANNOR S,et al.A tutorial on the cross-entropy method[J].Annals of Operations Research,2005,134(1):19-67. [18]RAKHLIN A.Diabetic Retinopathy Detection through Integration of Deep Learning Classification Framework[J].bioRxiv.2017,225508. [19]LI X,HU X,YU L,et al.CANet:Cross-Disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading[J].IEEE Transactions on Medical Imaging,2020,39(5):1483-1493. [20]LIU S T,GONG L J,MA K,et al.GREEN:A Graph Residual Re-Ranking Network for Grading Diabetic Retinopathy[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.Lima,Peru,2020:585-594. [21]POWERS D.Evaluation:From Precision,Recall and F-Measure to ROC,Informedness,Markedness and Correlation[J].Journal of Machine Learning Technologies,2011,2(1):37-63. [22]HUANG G,LIU Z,VAN DER MAATEN L,et al.Denselyconnected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:4700-4708. [23]TAN M,LE Q V.EfficientNet:Rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning.PMLR,2019:6105-6114. |
|