计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231000080-7.doi: 10.11896/jsjkx.231000080
李文旺, 周浩浩, 邓苏, 马武彬, 吴亚辉
LI Wenwang, ZHOU Haohao, DENG Su, MA Wubin, WU Yahui
摘要: 车联网(IoV)与联网自动驾驶汽车(CAV)的结合推动了自动驾驶技术的飞速发展,但也带来了对计算资源的巨大需求,给资源受限的车辆带来了挑战。车辆边缘计算(VEC)的出现,提供了一种全新的解决方案,通过将任务卸载到路侧单元中的边缘服务器上,能够以更高效的方式为车联网提供服务。然而,多个车辆同时发出卸载请求时会产生资源抢占,增大任务处理延时,如何高效调度资源以最大化服务质量是一个亟待解决的问题。为此,文中旨在从多目标优化的角度,详细分析VEC计算卸载的延迟和能耗,使延迟和成本最小化,并提出了名为NSGA2TO的基于改进非支配排序遗传算法的任务卸载算法。该算法能够寻找出多目标优化问题的Pareto最优解,大量仿真结果验证了NSGA2TO的优越性能。此外,还探究了Pareto最优解所涉及的延迟与能耗之间的关系,有助于更好地理解车辆任务卸载问题的复杂性。通过合理平衡延迟和能耗,将能够进一步提升车联网系统的性能和效率,为用户提供更安全、更便捷的出行体验。
中图分类号:
[1]HUANG Z,LOO B P Y.Urban traffic congestion in twelvelarge metropolitan cities:A thematic analysis of local news contents,2009-2018[J].International Journal of Sustainable Transportation,2023,17(6):592-614. [2]ANG L M,SENG K P,IJEMARUG K,et al.Deployment of IoV for smart cities:Applications,architecture,and challenges[J].IEEE Access,2018,7:6473-6492. [3]FAROOQU I,ISLAM M N,MUHAMMAD M K,et al.An Empirical Investigation of Performance Challenges Within Context-Aware Content Sharing for Vehicular Ad Hoc Networks[J].Trans.Emerging Telecommunications Technologies,2022,33(10):e4157. [4]HEID B,HUTH C,KEMPFS,et al.Ready for inspection:The automotive aftermarket in 2030[R].McKinsey & Company,Tech.Rep.,2018. [5]RAJASEKHAR K,KUMAR R,KIRAN M.Next-GenerationTechnologies Empowered Future IoV[C]//2022 IEEE 7th International Conference for Convergence in Technology(I2CT).IEEE,2022:1-5. [6]LU W,LEE W.Vehicular edge computing and networking:Asurvey[J].Mobile Networks and Applications,2000,5(2):101-102. [7]XU W,ZHOU H,SHEN X,et al.V2X Interworking via Vehi-cular Internet Access[M]//Internet Access in Vehicular Networks.Berlin:Springer,2021:57-82. [8]TANG J,LI X,JIN M,et al.A Mobility Aware Task Offloa-ding Scheme For Vehicle Edge Computing[C]//2021 13th International Conference on Wireless Communications and Signal Processing(WCSP).IEEE,2021:1-5. [9]FENG W,ZHANG N,LI S,et al.Latency minimization of reverse offloading in vehicular edge computing[J].IEEE Transactions on Vehicular Technology,2022,71(5):5343-5357. [10]WEN Y H,ZHANG Q,YUAN H,et al.Multi-Stage PSO-Based Cost Minimization for Computation Offloading in Vehicular Edge Networks[C]//2021 IEEE International Conference on Networking,Sensing and Control(ICNSC).IEEE,2021,1:1-6. [11]DU J,SUN Y,ZHANG N,et al.Cost-effective task offload-ing in NOMA-enabled vehicular mobile edge computing[J].IEEE Systems Journal,2022,17(1):928-939. [12]LIANG D,MA L,LOU H,et al.An Adaptive Algorithm to Offload Task for User's QoE in Vehicular Edge System[C]//2023 26th International Conference on Computer Supported Cooperative Work in Design(CSCWD).IEEE,2023:1263-1268. [13]ZHU L,ZHANG Z,LIU L,et al.Online Distributed Learning-Based Load-Aware Heterogeneous Vehicular Edge Computing[J].IEEE Sensors Journal,2023,23(15):17350-17356. [14]LU Y,AI B,ZHONG Z,et al.Energy-efficient task transfer in wireless computing power networks[J].IEEE Internet of Things Journal,2022,10(11):9353-9365. [15]CHEN X,DAI W,NI W,et al.Augmented Deep Rein-forcement Learning for Online Energy Minimization of Wireless Powered Mobile Edge Computing[J].IEEE Transactions on Communications,2023,71(5):2698-2710. [16]ZHENG K,JIANG G,LIU X,et al.DRL-Based Offloading for Computation Delay Minimization in Wireless-Powered Multi-Access Edge Computing[J].IEEE Transactions on Communications,2023,71(3):1755-1770. [17]SHINDE S S,BOZORGCHENANI A,TARCHI D,et al.On the design of federated learning in latency and energy constrained computation offloading operations in vehicular edge computing systems[J].IEEE Transactions on Vehicular Technology,2021,71(2):2041-2057. [18]YADAV R,ZHANG W,KAIWARTYA O,et al.Energy-latency tradeoff for dynamic computation offloading in vehicular fog computing[J].IEEE Transactions on Vehicular Technology,2020,69(12):14198-14211. [19]TANG D,ZHANG X,TAO X.Delay-optimal temporal-spatial computation offloading schemes for vehicular edge computing systems[C]//2019 IEEE Wireless Communications and Networking Conference(WCNC).IEEE,2019:1-6. [20]LIU Y,WANG S,HUANG J,et al.A computation offloading algorithm based on game theory for vehicular edge networks[C]//2018 IEEE International Conference on Communications(ICC).IEEE,2018:1-6. [21]REN J,YU G,HE Y,et al.Collaborative cloud and edge computing for latency minimization[J].IEEE Transactions on Vehicular Technology,2019,68(5):5031-5044. [22]PAN Z Y,CHEN J L,CHANG Y C.Low-latency computation offloading based on 5G Edge Computing Systems[C]//2022 24th International Conference on Advanced Communication Technology(ICACT).IEEE,2022:95-100. [23]ZHANG K,MAO Y,LENG S,et al.Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks[J].IEEE Access,2016,4:5896-5907. [24]JANG Y,NA J,JEONG S,et al.Energy-efficient task offloading for vehicular edge computing:Joint optimization of offloading and bit allocation[C]//2020 IEEE 91st Vehicular Technology Conference(VTC2020-Spring).IEEE,2020:1-5. [25]LV W,YANG P,ZHENG T,et al.Energy Consumption andQoS-Aware Co-Offloading for Vehicular Edge Computing[J].IEEE Internet of Things Journal,2022,10(6):5214-5225. [26]KALYANMOY D.A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Trans.on Evolutionary Computation,2002,6(2):182-197. [27]WU Q,XU X,ZHAO Q,et al.Tasks offloading for connected autonomous vehicles in edge computing[J].Mobile Networks and Applications,2022,27(6):2295-2304. |
|