计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240100137-9.doi: 10.11896/jsjkx.240100137
曹伟康1,2, 林宏刚1,2,3
CAO Weikang1,2, LIN Honggang1,2,3
摘要: 物联网设备识别在设备管理和网络安全等领域具有极为重要的作用,它不仅有助于管理员及时审查网络资产,还能将设备信息与潜在漏洞信息相互关联,及时发现潜在的安全风险。目前的物联网设备识别方法存在没有充分利用物联网设备的特征,并且在样本不平衡的情况下难以识别出样本较少的设备等问题。针对上述问题,文中提出了一种基于加权特征融合的物联网设备识别方法,设计了TextCNN-BiLSTM_Attention并行结构,分别提取物联网设备应用层服务信息的局部特征和上下文特征;提出了一种加权特征融合算法对不同模型提取的特征进行融合;最后采用多层感知机完成设备识别。实验结果表明,该方法能更全面地提取物联网设备特征,在数据不平衡的情况下识别出样本较少的设备,宏平均精准率比现有方法提升了2.6%~12.85%,具有良好的表征能力和泛化能力,且在识别效率方面优于CNN_LSTM等多模型方法。
中图分类号:
[1]KOUICEM D E,BOUABDALLAH A,LAKHLEF H.Internet of things security:A top-down survey[J].Computer Networks,2018,141:199-221. [2]KHAN M A,QUASIM M T,ALGARNI F,et al.Internet ofthings:On the opportunities,applications and open challenges in Saudi Arabia[C]//2019 International Conference on Advances in the Emerging Computing Technologies(AECT).IEEE,2020:1-5. [3]ANTONAKAKIS M,APRIL T,BAILEY M,et al.Understanding the mirai botnet[C]//26th USENIX Security Symposium(USENIX Security 17).2017:1093-1110. [4]FAN L,ZHANG S,WU Y,et al.An IoT device identification method based on semi-supervised learning[C]//2020 16th International Conference on Network and Service Management(CNSM).IEEE,2020:1-7. [5]FENG X,LI Q,WANG H,et al.Acquisitional rule-based engine for discovering {Internet-of-Things} devices[C]//27th USENIX security symposium(USENIX Security 18).2018:327-341. [6]FAN L N,LI C L,WU Y C,et al.Iot equipment identification and anomaly detection research review [J/OL].Journal of software,2024(1):288-308.https://doi.org/10.13328/j.cnki.jos.006818. [7]CHUNG W H,GU Y H,YOO S J.CHP Engine Anomaly Detection Based on Parallel CNN-LSTM with Residual Blocks and Attention[J].Sensors,2023,23(21):8746. [8]BREMLER-BARR A,LEVY H,YAKHINI Z.Iot or not:Identifying iot devices in a short time scale[C]//2020 IEEE/IFIP Network Operations and Management Symposium(NOMS 2020).IEEE,2020:1-9. [9]REDONDO J M,CUESTA D.Towards improving productivity in nmap security audits[J].Journal of Web Engineering,2019,18(7):539-577. [10]DURUMERIC Z,ADRIAN D,MIRAIN A,et al.A search engine backed by Internet-wide scanning[C]//Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.2015:542-553. [11]MIETTINEN M,MARCHAL S,HAFEEZ I,et al.Iot sentinel:Automated device-type identification for security enforcement in iot[C]//2017 IEEE 37th international conference on distributed computing systems(ICDCS).IEEE,2017:2177-2184. [12]KOSTAS K,JUST M,LONES M A.IoTDevID:A behavior-based device identification method for the IoT[J].IEEE Internet of Things Journal,2022,9(23):23741-23749. [13]SIVANATHAN A,SHERRATT D,GHARAKHEILI H H,et al.Characterizing and classifying IoT traffic in smart cities and campuses[C]//2017 IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS).IEEE,2017:559-564. [14]LI R G,DUAN P Y,SHEN M,et al.Traffic classification algorithm for Internet of Things devices based on Random forest [J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(2):233-239. [15]ZHU B Y,CHEN X,SHA L T,et al.Two-layer iot device classification recognition Model based on traffic and text fingerprint [J].Computer Science,2023,50(8):304-313. [16]LIU D D,HAN Y,LIU X Y,et al.Smart Home recognition method based on WiFi data frame feature [J].Computer Engineering and Applications,2023,59(15):274-280. [17]YAO L,ZHUANG H,SU Q,et al.Automatic smart deviceidentification based on web fingerprint and neural network[C]//Proceedings of the 2021 3rd International Conference on Big-data Service and Intelligent Computation.2021:33-41. [18]WAN S,LI Q,WANG H,et al.DevTag:A Benchmark for Fingerprinting IoT Devices[J].IEEE Internet of Things Journal,2022,10(7):6388-6399. [19]CHEN Q G,DU Y H,HAN Y,et al.Iot device recognition mod-el based on deep separable Convolution [J].Information Network Security,201,21(9):67-73. [20]YIN F,YANG L,WANG Y,et al.Iot etei:End-to-end iot device identification method[C]//2021 IEEE Conference on Dependable and Secure Computing(DSC).IEEE,2021:1-8. [21]WANG Z H.Iot device identification method based on hybrid structure of LCNN and LSTM [J].Information Network Security,2023,23(6):43-54. [22]TANG Y Z G,LU S D,QIAN L F,et al.IDFE:Fingerprint deep extraction method for iot device recognition [J/OL].Computer engineering and application:1-15.http://kns.cnki.net/kcms/detail/11.2127.tp.20230920.1333.054.html. [23]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [24]GREFF K,SRIVASTAVA R K,KOUTNÍK J,et al.LSTM:A search space odyssey[J].IEEE Transactions on Neural Networks and Learning Systems,2016,28(10):2222-2232. [25]JOHNSON R,ZHANG T.Deep pyramid convolutional neuralnetworks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2017:562-570. |
|