计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240100138-5.doi: 10.11896/jsjkx.240100138
李婷, 赵尔敦, 杨军
LI Ting, ZHAO Erdun, YANG Jun
摘要: 随着科技的飞速发展,辅助驾驶技术已经成为汽车行业未来发展的重要方向。在基于图像的道路障碍物检测中,现有方法对尺度变化大的目标、小目标和存在遮挡目标的检测能力有限,常出现误判和漏判等问题。针对此问题,提出了一种基于自注意力与双向特征融合的道路障碍物检测方法(CoXt-FCOS)。该方法在主干特征提取网络中引入分组的自注意力机制模块CoXT,以增强网络的全局信息捕获能力;为解决遮挡问题,引入跨阶段金字塔池化模块SPPCSPC;在特征融合模块中,引入路径增强网络,形成双向特征融合模块ESPAFPN,提升网络对小目标的感知能力。实验结果表明,CoXT-FCOS模型的精度较高,在CODA数据集上的mAP达到了88%,能够更准确地检测出道路上的障碍物。
中图分类号:
[1]TIAN Z,SHEN C,CHEN H,et al.Fcos:Fully convolutionalone-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:9627-9636. [2]GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1440-1448. [3]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [4]LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125. [5]REDMON J,DIVVALA S,GIRSHICKR,et al.You Only Look Once:Unified,Real-Time Object Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [6]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. [7]CARION N,MASSA F,SYNNAEVEG,et al.End-to-end object detection with transformers[C]//European Conference on Computer Vision.Cham:Springer International Publishing,2020:213-229. [8]ZHANG H,LI F,LIU S,et al.Dino:Detr with improved denoising anchor boxes for end-to-end object detection[J].arXiv:2203.03605,2022. [9]LIU S,QI L,QIN H,et al.Path aggregation network for in-stance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8759-8768. [10]LI Y,YAO T,PANY,et al.Contextual transformer networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(2):1489-1500. [11]XIE S,GIRSHICK R,DOLLÁR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1492-1500. [12]WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:7464-7475. [13]HE K,ZHANG X,REN S,et al.Spatial Pyramid Pooling inDeep Convolutional Networks for Visual Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [14]WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:A new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:390-391. [15]ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:Fasterand better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:12993-13000. [16]LI K,CHEN K,WANG H,et al.Coda:A real-world road corner case dataset for object detection in autonomous driving[C]//European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:406-423. [17]ZHAO S,CHEN N.Review on Small-scale Pedestrian DetectionTechnology for Complex Pavement[J].Computer Systems and Applications,2022,31(7):1-11. |
|