计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240800116-4.doi: 10.11896/jsjkx.240800116

• 交叉&应用 • 上一篇    下一篇

信江梯级航运枢纽船闸智能化维养的数据交互与决策优化

丁光明1, 赵玉忠2, 郑涌2   

  1. 1 江西省交通投资集团有限责任公司 南昌 330108
    2 中水珠江规划勘测设计有限公司 广州 510610
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 丁光明(dgmjsjkx@163.com)

Data Exchange and Decision Optimization for Intelligent Maintenance of Xinjiang Ship Locks

DING Guangming1, ZHAO Yuzhong2, ZHENG Yong2   

  1. 1 Jiangxi Communications Investment Group Co.,Ltd.,Nanchang 330108,China
    2 China Water Resources Pearl River Planning Surveying and Designing Co.,Ltd.,Guangzhou 510610,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:DING Guangming,born in 1977,Ph.D,engineer.His main research interests include traffic environment and safety technology.

摘要: 梯级航运工程规模巨大、运行环境复杂,维养工作面临着检测感知不足、检测维养时间受限以及结构评估与维养决策难等问题。基于上述船闸运维问题及数据管理需求,以江西信江梯级航运枢纽为研究对象,研究建立了智能船闸的维养数据总体技术框架,实施智能航运船闸维养数据交互设计,优化了智能化监控管理、设备与人员的自动化部署、运维服务与决策管理等功能的建设,实现了各应用系统的自动化配置、监控预警以及运维服务的发布并对运维数据进行深度整合,形成了专业数据挖掘平台与维养数据可视化愿景,通过数据化驱动的模式使船闸运维管理及服务能力得到进一步提升,并为其他同类型项目的维养系统研究提供参考。

关键词: 船闸, 智能化, 维养, 数据交互

Abstract: Due to the huge scale and complex operating environment of cascade shipping hub engineering,its maintenance tasks still face problems such as insufficient detection perception,limited detection and maintenance time,and the need to improve the level of structural evaluation and maintenance decision-making.Based on the above ship lock operation and maintenance problems and data management requirements,taking the Jiangxi Xinjiang cascade shipping junction as the research object,this paper studies and establishes the overall technical framework of maintenance data for intelligent ship locks,implements the interactive design of intelligent shipping ship lock maintenance data,and optimizes the construction of functions such as intelligent monitoring and management,automated deployment of equipment and personnel,operation and maintenance services and decision-making ma-nagement.It realizes the automated configuration,monitoring and early warning of various application systems and the release of operation and maintenance services,and deeply integrates operation and maintenance data,forming a professional data mining platform and the vision of visualized maintenance data.Through the data-driven model,the ship lock operation and maintenance management and service capabilities are further improved,and it provides a reference for the research of maintenance systems of other similar projects.

Key words: Ship lock, Intelligence, Maintenance, Data exchange

中图分类号: 

  • TP311
[1]LIANG Z K,JIANG Z M,LI G,et al.Research on inteligent operation and maintenance management platform ofhydraulic electromechanical equipment based on digital twin technology[J].EWRHI,2023,44(9):116-122.
[2]CHEN H L.Construction of intelligent operation and manage-ment platform for highway and bridge based on digital Li Sheng technology[J].China ITS Journal,2023(10):98-101.
[3]YANG T Z,JIANG W,LUO Y J.Intelligent operation and maintenance technology for Offshore wind power projects based on multi-source data fusion[J].Hydropower and New Energy.2024,38(6):28-31.
[4]ZHONG D H,WANG F,WU B P,et al.From digital dam toward smart dam[J].Journal of hydropower,2015,34(10):1-13.
[5]XIA Z L,JIING Q,SUN S W,et al.Research on the architecture of intelligent maintenance system of sea-crossing bridge based on digital twin concept[J].High IWay,2023,68(4):383-391.
[6]YAN X B,MAO Q,CHEN X S,et al.SMA2000-based trendanalysis system for Longyangxia Dam equipment[J].Mechanical &Electrical Technique of Hydropower Station,2021,44(10):46-48.
[7]CHEN X S,ZHANG X,WEN Z G,et al.Research and implementation of iP9000-based diagnostic analysis technology for hydropower station equipment[J].Mechanical & Electrical Technique of Hydropower Station,2019,42(12):46-48.
[8]HUANG Y W,NIU G L,LI D Y,et al.Research and applicationof intelligent perception and intelligent management technology for dam safety monitoring[J].Journal of Yangtze River Scientific Research Institute,2021,38(10):180-185,198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!