计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 30-36.doi: 10.11896/jsjkx.240300025
李子琛1, 易修文2,3, 陈顺1,2,3, 张钧波1,2,3, 李天瑞1
LI Zichen1, YI Xiuwen2,3, CHEN Shun1,2,3, ZHANG Junbo1,2,3, LI Tianrui1
摘要: 在中国,市民可以通过拨打12345市民热线,向政府报告生活中遇到的问题并寻求帮助。然而,有许多重复的事件被多次上报,这给负责事件分派的工作人员带来了很大的压力,也会导致事件的处置效率变低,浪费社会公共资源。对重复事件的判断需要精确分析文本语义和上下文关系,为了解决这个问题,文中提出了一种基于深度对比孪生网络的事件辨重方法,通过评估两个事件的描述文本之间的相似性,辨别出具有相同诉求的事件。首先通过召回和过滤的方法来减少候选事件的数量;然后通过对比学习构造任务,微调预训练的BERT模型,学习易于辨识的事件描述语义表征;最后引入事件标题作为上下文信息,并通过带有分类器的孪生网络来识别重复事件。在南通市12345事件数据集上进行了实验,结果表明,该方法在各项评估指标上均优于基线方法,特别是在与辨重任务场景相关的F0.5分数上,能够有效地辨别重复事件,提高事件处置的效率。
中图分类号:
[1]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training ofdeep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics.Human Language Technologies,2019:4171-4186. [2]SARZYNSKA-WAWER J,WAWER A,PAWLAK A,et al.Detecting formal thought disorder by deep contextualized word representations[J].Psychiatry Research,2021,304:114135. [3]YANG Z,DAI Z,YANG Y,et al.Xlnet:Generalized autoregressive pretraining for language understanding[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:5753-5763. [4]ZHENG Y P,MA X L.Using Government Hotline Data to Promote Smart Governance-The Case of Guangzhou Government Hotline[J].E-Government,2018(12):18-26. [5]MA X L,ZHENG Y P,ZHANG C W.The Big Data Empowering Effect of Government Hotlines on City Governance Innovation:Value,Status and Issues[J].Documentation,Informaiton &Knowledge,2021,38(2):4-12. [6]CHENG X M,CHEN G,CHEN J P,et al.RAVA:An Reinforced-Association-Based Method for 12345 Hotline Events Allocation[J].Journal of Chinese Information Processing,2022,36(10):155-166,172. [7]PU X,LONG K,CHEN K,et al.A semantic-based short-textfast clustering method on hotline records in Chengdu[C]//2019 IEEE Intl Conf on Dependable,Autonomic and Secure Computing,Intl Conf on Pervasive Intelligence and Computing,Intl Conf on Cloud and Big Data Computing,Intl Conf on Cyber Science and Technology Congress.2019:516-521. [8]PENG X,LI Y,SI Y,et al.A social sensing approach for everyday urban problem-handling with the 12345-complaint hotline data[J].Computers,Environment and Urban Systems,2022,94:101790. [9]LUO J Y,QIU Z,XIE G Q,et al.Research on civic hotline complaint text classification model based on word2vec[C]//2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery.IEEE,2018:180-1803. [10]CHANDRASEKARAN D,MAGO V.Evolution of semanticsimilarity-a survey[J].ACM Computing Surveys(CSUR),2021,54(2):1-37. [11]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[C]//Proceedings of the 1th International Conference on Learning Representations.2013. [12]PENNINGTON J,SOCHER R,MANNING C D.Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing.2014:1532-1543. [13]KIM Y.Convolutional Neural Networks for Sentence Classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.2014:1746-1751. [14]JOHNSON R,ZHANG T.Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:562-570. [15]LIU P,QIU X,HUANG X.Recurrent neural network for text classification with multi-task learning[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.2016:2873-2879. [16]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [17]KATHERINE L,DAPHNE L,NYSTROM A,et al.Deduplica-ting Training Data Makes Language Models Better[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.2022:8424-8445. [18]BIKASH G,LUCAS A,PETR K.Deduplication of ScholarlyDocuments using Locality Sensitive Hashing and Word Embeddings[C]//Proceedings of the Twelfth Language Resources and Evaluation Conference.2020:901-910. [19]JAISWAL A,BABU A R,ZADEH M Z,et al.A survey on con-trastive self-supervised learning[J].Technologies,2020,9(1):2. [20]CHEN T,KORNBLITH S,NOROUZI M,et al.A simpleframework for contrastive learning of visual representations[C]//International Conference on Machine Learning.PMLR,2020:1597-1607. [21]GAO T,YAO X,CHEN D.SimCSE:Simple Contrastive Lear-ning of Sentence Embeddings[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Proces-sing.2021:6894-6910. [22]WIETING J,BANSAL M,GIMPEL K,et al.Towards Universal Paraphrastic Sentence Embeddings[C]//Proceedings of the 4th International Conference on Learning Representations.2016. [23]CHEN X,HE K.Exploring Simple Siamese RepresentationLearning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:15750-15758. [24]SONG Y,SHI S,LI J,et al.Directional Skip-Gram:ExplicitlyDistinguishing Left and Right Context for Word Embeddings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:175-180. [25]IYYER M,MANJUNATHA V,BOYD-GRABER J,et al.Deep Unordered Composition Rivals Syntactic Methods for Text Classification[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.2015:1681-1691. [26]WANG L,YANG N,HUANG X,et al.Text Embeddings byWeakly-supervised Contrastive Pre-training[J].arXiv:2212.03533,2022. [27]LIU Y,OTT M,GOYAL N,et al.Roberta:A Robustly Optimized BERT Pretraining Approach[J].arXiv:1907.11692,2019. [28]REIMERS N,GUREVYCH I.Sentence-BERT:Sentence Em-beddings using Siamese BERT-Networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.2019:3982-3992. [29]BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3(Jan):993-1022. |
|