计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 20-29.doi: 10.11896/jsjkx.240300064

• 数字孪生网络与人工智能融合 • 上一篇    下一篇

知识定义算力网络下的重击流智能流量调度机制

粘英璞1, 易波1, 李沛辰1, 王兴伟1, 黄敏2   

  1. 1 东北大学计算机科学与工程学院 沈阳 110169
    2 东北大学信息科学与工程学院 沈阳 110819
  • 收稿日期:2024-03-11 修回日期:2024-08-10 出版日期:2024-12-15 发布日期:2024-12-10
  • 通讯作者: 易波(yibo@cse.neu.edu.cn)
  • 作者简介:(nianyingpu0124@163.com)
  • 基金资助:
    国家重点研发计划(2022YFB2901303);国家自然科学基金(62032013,U22A2004,92267206);中央高校基本科研业务费项目(N2316006);辽宁省科技联合计划项目(2023-MSBA-079)

Knowledge-defined Intelligent Traffic Scheduling Mechanism in Computing Network

NIAN Yingpu1, YI Bo1, LI Peichen1, WANG Xingwei1, HUANG Min2   

  1. 1 School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
    2 School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
  • Received:2024-03-11 Revised:2024-08-10 Online:2024-12-15 Published:2024-12-10
  • About author:NIAN Yingpu,born in 2000,postgra-duate.His main research interests include next generation Internet,intelligent routing,computing networking.
    YI Bo,born in 1988,Ph.D,associate professor,master supervisor,is a member of CCF(No.34223S).His main research interests include SDN/NFV,routing,service computing and computing networking.
  • Supported by:
    National Key Research and Development Program of China(2022YFB2901303),National Natural Science Foundation of China(62032013,U22A2004,92267206),Fundamental Research Funds for the Central Universities of China(N2316006) and Liaoning Provincial Science and Technology Joint Program(2023-MSBA-079).

摘要: 当前,知识定义网络赋能AI技术发展,算力网络提供AI所需算力资源,二者逐渐趋于融合,形成了知识定义算力网络(Knowledge Defined Computing Networking,KDCN)。KDCN赋能发展了诸多新型网络应用,如元宇宙、AR/VR、东数西算等,这些新型应用对算力资源和网络资源有极大的需求,被称为重击流(Heavy Hitter,HH)。HH流的存在严重加剧了KDCN网络的拥塞情况。针对这一挑战,提出了一种智能流量调度机制,旨在通过深度Q神经网络来解决KDCN中的拥塞问题。相较于离线训练过程,通过流量数据检测与采集、在模型训练和拥塞流调决策之间建立实时闭环,来实现深度Q神经网络模型的在线训练。基于该闭环控制,智能流调模型通过不断学习可以实现持续演化,并用于提供实时决策。实验结果表明,该算法在资源利用率、吞吐量、平均丢包率等方面优于现有方法。

关键词: 知识定义算力网络, 深度Q神经网络, 智能拥塞流调, 重击流, 闭环控制

Abstract: At present,the knowledge-defined network empowers the development of AI technology,and the computing power network provides the computing power resources required by AI.The two gradually tend to integrate to form the knowledge defined computing networking(KDCN).KDCN has empowered the development of many new network applications,such as the metaverse,AR/VR,east-west computing.These new applications have a great demand for computing power resources and network resources,and are called heavy hitter(HH).The existence of HH flow seriously aggravates the congestion of KDCN network.In response to this challenge,this paper proposes an intelligent traffic scheduling mechanism,which aims to solve the congestion problem in KDCN through deep Q neural networks.Compared with the offline training process,a real-time closed loop is established between traffic data detection and acquisition,model training,and congestion flow modulation decision-making to realize the online training of the deep Q neural network model.Based on this closed-loop control,the intelligent flow modulation model can realize continuous evolution through continuous learning,and is used to provide real-time decision-making.Experimental results show that the proposed algorithm is superior to the existing methods in resource utilization,throughput,average packet loss rate and so on.

Key words: Knowledge definition computing networking, Deep Q neural networks, Intelligent congestion flow modulation, Heavy hitter flow, Closed loop control

中图分类号: 

  • TP391
[1]Cisco.White Paper.Cisco Annual Internet Report 2018-2023[R/OL]Mar 2020.https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.
[2]MORANDIN G M.Transmission Control Protocol-TCP[OL].https://www.zhangqiaokeyan.com/patent-detail/06130437989464.html.
[3]LATIF Z,SHARIF K,LI F,et al.A Comprehensive Survey of Interface Protocols for Software Defined Networks[J].Journal of Network and Computer Applications,2020,156:102563.
[4]MOIN S,KARIM A,SAFDAR K,et al.GREEN SDN-An Enhanced Paradigm of SDN:Review,Tax-onomy,and Future Directions[J].Concurrency and Computation:Practice and Experience,2020,32(21):e5086.
[5]ALBERT M,RODRIGUEZ-NATAL A,CARNER J,et al.Knowledge-Defined Networking[J].CM SIGCOM Computer Communication Review,2017,47(3):2-10.
[6]CLARK D.A knowledge plane for the internet[C]//Procee-dings of the 2003 Conference on Applications,Technologies,Architectures,and Protocols for Computer Communications.2003:3-10.
[7]DALAL S,DAHIYA N,SETH B,et al.Adaptive Traffic Rou-ting Practice for Load Balance and Congestion Control in AdHoc Network in Cloud-MANET[J/OL].https://www.researchgate.net/publication/353498753_Adaptive_Traffic_Routing_Practice_for_Load_Balance_and_Congestion_Control_in_AdHoc_Network_in_Cloud-MANET.
[8]ZHANG L,CUI Y,WANG M,et al.DeepCC:Bridging the Gap Between Congestion Control and Applications via Multiobjective Optimization[J].IEEE/ACM Transactions on Networking,2022,30(5):2274-2288.
[9]WANG Y,WANG L,DONG X.An Intelligent TCP Congestion Control Method Basedon Deep Q Network[J].Future Internet,2021,13(10):261.
[10]HM A,DU X A,YD B,et al.An intelligent scheme for conges-tion control:Whenactive queue management meets deep reinforcement learning[J].Computer Networks,2021,200:108515.
[11]ALIZADEH M,EDSALL T,DHARMAPURIKAR S,et al.CONGA:distributed congestion-aware load balancing for datacenters[J].ACM SIGCOMM Computer Communication Review.2041,44(4):503-514.
[12]MOHAMMAD A,SIVASANKAR R,BARATH R,et al.He-dera:dynamic flow scheduling for data center networks[C]//Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation(NSDI’10).USENIX Association.2010.
[13]ZAHER M,ALAWADI A,MOLNAR S.Class-based FlowScheduling Framework in SDN-based Data Center Networks[C]//International Conference on Computing,Electronics & Communications Engineering(iCCECE).2020.
[14]LIU Z,LI K,WU L,et al.CATS:Cost Aware Task Scheduling in Multi-Tier Computing Networks[J].Journal of Computer Research and Development,2020,57(9):1810-1822.
[15]AMPRATWUM I.An Intelligent Traffic ClassificationBasedOptimized Routing in SDN-IoT:A Machine Learning Approach[D].Ottawa:University of Ottawa,2020.
[16]MOUFAKIR T,ZHANI M F,GHERBI A,et al,Collaborative Multi-domain Routing in S DN Environments[J].Journal of Network and Systems Management,2022,30(1):1-23.
[17]VAN ROSSEMS,TAVERNIER W,SONKOLY B,et al.Deploying elastic routing capability in an SDN/NFV-enabled environment[C]//IEEE Conference on Network Function Virtualization and Software Defined Network(NFV-SDN).2015:22-24.
[18]SHI X,LI Q,WANG D,et al.Mobile Computing Force Network(MCFN):Computing and Network Convergence Supporting Integrated Communication Service[C]//International Conference on Service Science(ICSS).2022:131-136.
[19]RUELAS A M R,ROTHENBERG C E.A Load BalancingMethod based on Artificial Neural Networks for Knowledge-defined Data Center Networking[C]//IFIP LANC.2018.
[20]PHAM Q T A,HADJADJ-AOUL Y,OUTTAGARTS A.Deep Reinforcement Learning Based QoS-Aware Routing in Know-ledge-Defined Networking[M]//Social Informatics and Telecommunications Engineering.2019:14-26.
[21]DUQUE-TORRES A,AMEZQUITA-SUAREZ F,RENDONO,et al.An Approach Based on Knowledge-Defined Networking for Identifying Heavy-Hitter Flows in Data Center Networks[J].Applied Sciences,2019,9(22):1-19.
[22]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J].arXiv:1409.1556,2014.
[23]JIAWEI H,MICHELINE K.Data Mining:Concepts and Techniques[J].Data Mining C oncepts Models Methods & Algorithms Second Edition,2006,5(4):1-18.
[24]JANE M,GREG G.Editorial for Journal of Field RoboticsSpecial Issue on Machine Learning Based Robotics in Unstructured Environments[J].Journal of Field Robotics,2006,23(11/12):943-944.
[25]DUAN Y,NI H,ZHU X,et al.A Single-Rate Multicast Congestion Control(SRMCC) Mechanism in Information-Centric Networking[J].Future Internet,2022,14(2):38.
[26]LEE C,JUNG J,CHUNG J M.DEFT:Multipath TCP for High Speed Low Latency Communications in 5G Networks[J].IEEE Transactions on Mobile Computing,2020,20(12):3311-3321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!