计算机科学 ›› 2025, Vol. 52 ›› Issue (1): 298-306.doi: 10.11896/jsjkx.231100161
孟令君1, 陈鸿昶2, 王庚润2
MENG Lingjun1, CHEN Hongchang2, WANG Gengrun2
摘要: 现阶段社交机器人已经广泛存在于社交平台,社交机器人的存在使得网络上的舆论环境可以被人为操纵,这样不仅损害了绿色和谐的网络环境,同时也导致人们正常的网络生活受到极大影响。现有的检测方法可以分为基于特征、基于文本和基于图的方法,其中基于图数据的检测方法大多忽略了图中关系的异质性,并且由于图神经网络存在过渡平滑现象而不能进行深度检测。针对这一问题,提出基于多关系图注意力网络的社交机器人检测方法,在训练时首先将不同关系下的子图抽取出来,然后对子图中的节点采用注意力机制进行聚合,在不同关系下进行节点表示学习并得到节点表示,最后利用通道注意力融合不同关系下的同一节点得到节点表示;同时采用基于LSTM注意力的后连接操作让节点可以自适应地选择邻域进行聚合,以此来缓解过度平滑现象。在Cresci15,Twibot20和MGTAB这3个数据集上的实验结果表明,与11个模型中评价指标的最优值相比,该模型的准确率分别提升了0.47%,1.19%和0.38%,验证了多关系图注意力网络进行社交机器人检测的有效性。
中图分类号:
[1]MARIA K,ILIAS D,ATHENA V.Bot-Detective:An explai-nable Twitter bot detection service with crowdsourcing functionalities[C]//12th International Conference on Management of Digital Ecosystems.New York:Association for Computing Machinery,2020:55-63. [2]WU Y H,FANG Y Z,SHANG S K,et al.A novel framework for detecting social bots with deep neural networks and active learning[J].European Journal of Medicinal Chemistry:Chimie Therapeutique,2021,211(1):1-16. [3]ABREU J,GONDIM J,RALHA C.Twitter Bot Detection with Reduced Feature Set[C]//2020 IEEE International Conference on Intelligence and Security Informatics(ISI).USA:Arlington,2020:1-6. [4]HU F X,LUO W H.Social robot account detection based onmulti-dimensional dynamic feature verification[J].Journal of Foshan University,2023,41(1):23-34. [5]SNEHA K,EMILIO F.Deep Neural Networks for Bot Detection[J].Information Sciences,2018,467(10):312-322. [6]GUO Q,XIE H,LI Y,et al.Social Bots Detection via Fusing BERT and Graph Convolutional Networks[J].Symmetry,2022,14(1):1-30. [7]HAYAWI K,MATHEW S,VENUGOPAL N,et al.DeeProBot:a hybrid deep neural network model for social bot detection based on user profile data[J].Social Network Analysis and Mi-ning,2022,12(1):1-19. [8]WU J,YE X,MAN Y.BotTriNet:A Unified and Efficient Embedding for Social Bots Detection via Metric Learning[C]//2023 11th International Symposium on Digital Forensics and Security(ISDFS).Turkey:Istanbul,2023:1-6. [9]WANG X,JI H Y,SHI C,et al.Heterogeneous Graph Attention Network[C]//The World Wide Web Conference(WWW’19).New York:Association for Computing Machinery,2019:2022-2032. [10]LI Y,JI Y,LI S,et al.Relevance-aware anomalous users’ detection in social network via graph neural network[C]//2021 International Joint Conference on Neural Networks(IJCNN).New York:IEEE,2021:1-8. [11]FENG S B,WAN H R,WANG N N.SATAR:A Self-supervised Approach to Twitter Account Representation Learning and its Application in Bot Detection[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.New York:Association for Computing Machinery,2021:3808-3817. [12]FENG S B,WAN H R,WANG N N.BotRGCN:Twitter bot detection with relational graph convolutional networks[C]//Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.New York:Association for Computing Machinery,2021:236-239. [13]YANG Y G,YANG R Y,LI Y Y,et al.RoSGAS:Adaptive Social Bot Detection with Reinforced Self-supervised GNN Architecture Search[J].ACM Transactions on the Web,2023,17(3):1-31. [14]XU K Y,ZHOU A M,CHEN A L,et al.Social bot detection based on active learning and relational graph convolutional neural networks[J].Journal of Sichuan University(Natural Science Edition),2023,60(5):121-129. [15]CAI Z J,TAN Z X,LEI Z Y,et al.LMBot:Distilling GraphKnowledge into Language Model for Graph-less Deployment in Twitter Bot Detection[J].arXiv:2306.17408,2023. [16]SIRUSSTARA J,ALEXANDER N,ALFARISY A,et al.Clickbait Headline Detection in Indonesian News Sites using Robustly Optimized BERT Pre-training Approach(RoBERTa)[C]//2022 3rd International Conference on Artificial Intelligence and Data Sciences(AiDAS).IPOH:Malaysia,2022:1-6. [17]VASWANI A,SHAZEER N,PARMAR N,et al.Attention IsAll You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS’17).San Diego:NIPS,2017:6000-6010. [18]SCHLICHTKRULL M,KIPF T,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//European Semantic Web Conference.European:Springer,2018:593-607. [19]HU J,SHEN L,ALBANIE S,et al.Squeeze-and-Excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2017:7132-7141. [20]LI Q M,HAN Z C,WU X M.Deeper Insights Into Graph Con-volutional Networks for Semi-Supervised Learning[C]//Thirty-Second AAAI Conference on Artificial Intelligence.New York:AAAI Press,2018:3538-3545. [21]JIANG Y,ZHAO T,CHAI Y,et al.Bidirectional LSTM-CRF models for keyword extraction in Chinese sport news[J].MIPPR 2019:Pattern Recognition and Computer Vision,2020,2(1):11-17. [22]STEFANO C,ROBERTO D,MARINELLA P,et al.Fame for sale:Efficient detection of fake Twitter followers[J].Decision Support Systems,2015,80(9):56-71. [23]FENG S B,WAN H,WANG N,et al.TwiBot-20:A Comprehensive Twitter Bot Detection Bench-mark[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management,New York:ACM,2020:4485-4494. [24]SHI S H,QIAO K,CHEN J.MGTAB:A Multi-RelationalGraph-Based Twitter Account Detection Benchmark[C]//IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE,2023:1-14. [25]WEI Y L.Classification and regression trees[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2011,1(1):3-7. [26]BREIMAN L.Random forests[J].Machine Learning,2004,45:5-32. [27]SHA A,WANG B,WU X,et al.Semi-Supervised Classification for Hyperspectral Images Using Edge-Conditioned Graph Con-volutional Networks[C]//IEEE International Geoscience and Remote Sensing Symposium(IGARSS 2019).Japan:Yokohama,2019:2690-2693. [28]PETAR V,GUILLEM C,ARANTXA C,et al.Graph attention networks[C]//International Conference on Learning Representations(ICLR).Washington:ICLR,2018. [29]WILL H,YING Z T,JURE L.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS’17).USA:Curran Associates Inc.2017:1025-1035. [30]HU Z H,DONG Y X,WANG K S,et al.Heterogeneous graph transformer[C]//Proceedings of The Web Conference 2020(WWW’20).USA:Association for Computing Machinery,2020:2704-2710. [31]YE S,TAN Z,LEI Z,et al.Hofa:Twitter bot detection with homophily-oriented augmentation and frequency adaptive attention[J].arXiv:2306.12870,2023. [32]SHI S H,QIAO K,YANG J,et al.RF-GNN:Random Forest boosted graph neural network for social bot detection[J].arXiv:2304.08239,2023. [33]LV Q S,DING M,LIU Q,et al.Are we really making much progress?Revisiting,benchmarking and refining heterogeneous graph neural networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.New York:ACM,2021:1150-1160. [34]LU H Y,LIU F,WANG Y B.Social Bot Detection for Dynamic Social Networks Based on Link Prediction[J].Journal of Information Engineering University,2024,25(3):285-291. |
|