计算机科学 ›› 2025, Vol. 52 ›› Issue (1): 362-373.doi: 10.11896/jsjkx.240500118
王鑫1,2, 熊书博1, 孙凌云2
WANG Xin1,2, XIONG Shubo1, SUN Lingyun2
摘要: 图作为一种高效、灵活、通用的数据结构,在多个学科领域得到了广泛应用。近年来,基于图的深度学习算法不断涌现,并在社交网络、生物信息学、推荐系统等领域取得显著成效。尽管公开的图数据量在增加,但高质量的数据往往分散在不同的数据所有者手中。随着社会对数据隐私保护要求的提高,现有的图学习算法面临着许多挑战。图联邦学习作为一种有效的解决方案应运而生。文中系统回顾了图联邦学习领域近五年的研究进展,将该领域的核心问题划分为3个部分,并在结构上进行了垂直整合,在关系上进行了递进阐述,包括:1)原始图数据差异导致的结构异构性;2)图联邦特性导致的模型聚合问题;3)模型整体调优方面的挑战。针对每个问题,详细分析了代表性工作及其优缺点,并总结了图联邦学习领域的典型应用和未来挑战。
中图分类号:
[1]MITTONE G,SVOBODA F,ALDINUCCI M,et al.A Federated Learning Benchmark for Drug-Target Interaction[C]//Companion Proceedings of the ACM Web Conference 2023.New York,NY,USA:Association for Computing Machinery,2023:1177-1181. [2]QI T,CHEN L,LI G,et al.FedAGCN:A traffic flow prediction framework based on federated learning and Asynchronous Graph Convolutional Network[J].Applied Soft Computing,2023,138:110175. [3]MEI G,GUO Z,LIU S,et al.SGNN:A Graph Neural Network Based Federated Learning Approach by Hiding Structure[C]//2019 IEEE International Conference on Big Data(Big Data).2019:2560-2568. [4]GUAN Z L,DU J P,XUE Z,et al.Personalized Public SafetyEmergency Detection Method Based on Enhanced Federated Graph Neural Network [J].Journal of Software,2024,35(4):1774-1789. [5]ZHU W,LUO J,WHITE A D.Federated learning of molecular properties with graph neural networks in a heterogeneous setting[J].Patterns,2022,3(6):100521. [6]HE C,BALASUBRAMANIAN K,CEYANI E,et al.Fed-GraphNN:A Federated Learning System and Benchmark for Graph Neural Networks[J].arXiv:2104.07145,2021. [7]LIU R,XING P,DENG Z,et al.Federated Graph Neural Networks:Overview,Techniques and Challenges[J].arXiv:2202.07256,2024. [8]WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-24. [9]KAIROUZ P,MCMAHAN H B,AVENT B,et al.Advancesand Open Problems in Federated Learning[M]//Now Foundations and Trends.2021:1-210. [10]ZHANG H,SHEN T,WU F,et al.Federated Graph Learning -- A Position Paper[J].arXiv:2105.11099 2021. [11]ZHAO G,HUANG Y,TSAI C H.FedGSL:Federated Graph Structure Learning for Local Subgraph Augmentation[C]//2022 IEEE International Conference on Big Data(Big Data).2022:818-824. [12]CHEN S,XUE D,CHUAI G,et al.FL-QSAR:a federatedlearning-based QSAR prototype for collaborative drug discovery[J].Bioinformatics(Oxford,England),2021,36(22-23):5492-5498. [13]CHEN M,ZHANG W,YUAN Z,et al.FedE:EmbeddingKnowledge Graphs in Federated Setting[C]//Proceedings of the 10th International Joint Conference on Knowledge Graphs.New York,NY,USA:Association for Computing Machinery,2022:80-88. [14]PENG H,LI H,SONG Y,et al.Differentially Private Federated Knowledge Graphs Embedding[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.New York,NY,USA:Association for Computing Machinery,2021:1416-1425. [15]WU C,WU F,LYU L,et al.FedGNN:A federated graph neural network framework for privacy-preserving personalization[J].Nature Communications,2022,13(1):3091. [16]BAEK J,JEONG W,JIN J,et al.Personalized Subgraph Federated Learning[J].arXiv:2206.10206,2023. [17]ZHANG K,YANG C,LI X,et al.Subgraph Federated Learning with Missing Neighbor Generation[J].arXiv:2106.13430,2021. [18]PENG L,WANG N,DVORNEK N,et al.FedNI:FederatedGraph Learning With Network Inpainting for Population-Based Disease Prediction[J].IEEE Transactions on Medical Imaging,2023,42(7):2032-2043. [19]XIE H,XIONG L,YANG C.Federated Node Classification over Graphs with Latent Link-type Heterogeneity[C]//Proceedings of the ACM Web Conference 2023.Austin TX USA:ACM,2023:556-566. [20]BONAWITZ K,IVANOV V,KREUTER B,et al.Practical Secure Aggregation for Privacy-Preserving Machine Learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.New York,NY,USA:Association for Computing Machinery,2017:1175-1191. [21]ACAR A,AKSU H,ULUAGAC A S,et al.A Survey on Homomorphic Encryption Schemes:Theory and Implementation[J].ACM Computing Surveys,2018,51(4):79:1-79:35. [22]GEISLER S,ZÜGNER D,GÜNNEMANN S.Reliable GraphNeural Networks via Robust Aggregation[C]//Advances in Neural Information Processing Systems.2020:13272-13284. [23]CHEN C,ZHOU J,ZHENG L,et al.Vertically FederatedGraph Neural Network for Privacy-Preserving Node Classification[J].arXiv:2005.11903,2022. [24]JIANG M,JUNG T,KARL R,et al.Federated Dynamic GNN with Secure Aggregation[J].arXiv:2009.07351,2022. [25]GÜRLER Z,REKIK I.Federated Brain Graph Evolution Prediction Using Decentralized Connectivity Datasets With Temporally-Varying Acquisitions[J].IEEE Transactions on Medical Imaging,2023,42(7):2022-2031. [26]CHEN C,HU W,XU Z,et al.FedGL:Federated Graph Lear-ning Framework with Global Self-Supervision[J].arXiv:2105.03170,2021. [27]MAI P,PANG Y.Vertical Federated Graph Neural Network for Recommender System[J].arXiv:2303.05786,2021. [28]NI X,XU X,LYU L,et al.A Vertical Federated LearningFramework for Graph Convolutional Network[J].arXiv:2106.11593,2021. [29]ZHANG X,YIN W,HONG M,et al.Hybrid federated learning:Algorithms and implementation[J].arXiv:2012.12420,2020. [30]GAO H,GE S,CHANG T H.FedHD:Communication-efficient federated learning from hybrid data[J].Journal of the Franklin Institute,2023,360(12):8416-8454. [31]JANG J,KLABJAN D,MENDIRATTA V,et al.HybridFedGraph:An efficient hybrid federated learning algorithm using graph convolutional neural network[J].arXiv:2404.09443,2024. [32]RIZK E,SAYED A H.A Graph Federated Architecture with Privacy Preserving Learning[C]//2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications(SPAWC).2021:131-135. [33]MCMAHAN B,MOORE E,RAMAGE D,et al.Communica-tion-efficient learning of deep networks from decentralized data[C]//Artificial Intelligence and Statistics.PMLR,2017:1273-1282. [34]HU K,WU J,LI Y,et al.FedGCN:Federated Learning-Based Graph Convolutional Networks for Non-Euclidean Spatial Data[J].Mathematics,2022,10(6):1000. [35]DINH C T,VU T T,TRAN N H,et al.A New Look and Convergence Rate of Federated Multi-Task Learning with Laplacian Regularization[J].arXiv:2102.07148,2022. [36]PEI Y,MAO R,LIU Y,et al.Decentralized federated graph neural networks[C]//International Workshop on Federated and Transfer Learning for Data Sparsity and Confidentiality in Conjunction with IJCAI.2021. [37]LI X,WU Z,ZHANG W,et al.FedGTA:Topology-aware Ave-raging for Federated Graph Learning[J].arXiv:2401.11755,2024. [38]DENG Z,HUANG X,LI D,et al.FedGraph:an AggregationMethod from Graph Perspective[J].arXiv:2210.02733,2022. [39]LALITHA A,KILINC O C,JAVIDI T,et al.Peer-to-peer Fe-derated Learning on Graphs[J].arXiv:2210.02733,2022. [40]HE C,CEYANI E,BALASUBRAMANIAN K,et al.Spread-GNN:Decentralized Multi-Task Federated Learning for Graph Neural Networks on Molecular Data[J].Proceedings of the AAAI Conference on Artificial Intelligence,2022,36(6):6865-6873. [41]CHOI B,YONG S J,HAN D J,et al.Communication-Computation Efficient Secure Aggregation for Federated Learning[J].arXiv:2012.05433,2021. [42]GOGINENI V C,WERNER S,HUANG Y F,et al.Decentra-lized Graph Federated Multitask Learning for Streaming Data[C]//2022 56th Annual Conference on Information Sciences and Systems(CISS).2022:101-106. [43]MALINOVSKIY G,KOVALEV D,GASANOV E,et al.From local SGD to local fixed-point methods for federated learning[C]//International Conference on Machine Learning.PMLR,2020:6692-6701. [44]CHEN F,LI P,MIYAZAKI T,et al.FedGraph:FederatedGraph Learning with Intelligent Sampling[J].arXiv:2111.01370,2021. [45]YAO Y,JIN W,RAVI S,et al.FedGCN:Convergence-Communication Tradeoffs in Federated Training of Graph Convolutional Networks[J].arXiv:22041.12433,2022. [46]ZHANG C,ZHANG S,YU J J Q,et al.FASTGNN:A Topolo-gical Information Protected Federated Learning Approach for Traffic Speed Forecasting[J].IEEE Transactions on Industrial Informatics,2021,17(12):8464-8474. [47]MENG C,RAMBHATLA S,LIU Y.Cross-Node FederatedGraph Neural Network for Spatio-Temporal Data Modeling[J].arXiv:2160.05223,2021. [48]CHEN F,LONG G,WU Z,et al.Personalized Federated Lear-ning With Graph[J].arXiv:2203.00829,2022. [49]XING P,LU S,WU L,et al.BiG-Fed:Bilevel Optimization Enhanced Graph-Aided Federated Learning[EB/OL].https://fli-cml.github.io/2021/papers/FL-ICML21_paper_74.pdf. [50]LEE H,BERTOZZI A L,KOVACˇEVIĆ J,et al.Privacy-Preserving Federated Multi-Task Linear Regression:A One-Shot Linear Mixing Approach Inspired By Graph Regularization[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2022:5947-5951. [51]ZHU H,XU J,LIU S,et al.Federated Learning on Non-IID Data:A Survey[J].arXiv:2106.06843,2022. [52]XIE H,MA J,XIONG L,et al.Federated Graph Classification over Non-IID Graphs[C]//Advances in Neural Information Processing System.2021:18839-18852. [53]ZHENG L,ZHOU J,CHEN C,et al.ASFGNN:AutomatedSeparated-Federated Graph Neural Network[J].arXiv:2011.03248,2020. [54]HE H,BAI Y,GARCIA E A,et al.ADASYN:Adaptive syn-thetic sampling approach for imbalanced learning[C]//2008 IEEE International Joint Conference on Neural Networks(IEEE World Congress on Computational Intelligence).2008:1322-1328. [55]LIN Y,CHEN C,CHEN C,et al.Improving Federated Rela-tional Data Modeling via Basis Alignment and Weight Penalty[J].arXiv:2011.11369,2020. [56]WANG B,LI A,LI H,et al.GraphFL:A Federated LearningFramework for Semi-Supervised Node Classification on Graphs[J].arXiv:2012.04187,2020. [57]TAN Y,LIU Y,LONG G,et al.Federated Learning on Non-IID Graphs via Structural Knowledge Sharing[J].Proceedings of the AAAI Conference on Artificial Intelligence,2023,37(8):9953-9961. [58]HANZELY F,RICHTÁRIK P.Federated Learning of a Mixture of Global and Local Models[J].arXiv:2002.05516,2021. [59]DINH C,TRAN N,NGUYEN J.Personalized Federated Lear-ning with Moreau Envelopes[C]//Advances in Neural Information Processing Systems.2020:21394-21405. [60]ARIVAZHAGAN M G,AGGARWAL V,SINGH A K,et al.Federated Learning with Personalization Layers[J].arXiv:1912.00818,2019. [61]SATTLER F,MÜLLER K R,SAMEK W.Clustered Federated Learning:Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints[J].arXiv:1910.01991,2019. [62]ZHANG K,XIE H,GU Z,et al.Subgraph federated learningover heterogeneous graphs[J].arXiv:2106.13430,2022. [63]WEBER M,CHEN J,SUZUMURA T,et al.Scalable GraphLearning for Anti-Money Laundering:A First Look[J].arXiv:1812.00076,2018. [64]DU H,SHEN M,SUN R,et al.Malicious Transaction Identification in Digital Currency via Federated Graph Deep Learning[C]//IEEE Conference on Computer Communications Workshops.2022:1-6. [65]CHEN Z,LI W,XING X,et al.Medical federated learning with joint graph purification for noisy label learning[J].Medical Image Analysis,2023,90:102976. [66]AHMED U,LIN J C W,SRIVASTAVA G.Hyper-Graph Attention Based Federated Learning Methods for Use in Mental Health Detection[J].IEEE Journal of Biomedical and Health Informatics,2023,27(2):768-777. [67]LIU L,TIAN Y,CHAKRABORTY C,et al.Multilevel Federated Learning-Based Intelligent Traffic Flow Forecasting for Transportation Network Management[J].IEEE Transactions on Network and Service Management,2023,20(2):1446-1458. [68]CHEN J,HUANG G,ZHENG H,et al.Graph-Fraudster:Adversarial Attacks on Graph Neural Network-Based Vertical Fe-derated Learning[J].IEEE Transactions on Computational Social Systems,2023,10(2):492-506. [69]LI R C,ZHENG H B,ZHAO W H,et al.Data Reconstruction Attack for Vertical Graph Federated Learning[J].Computer Science,2023,50(7):332-338. |
|