计算机科学 ›› 2025, Vol. 52 ›› Issue (2): 158-164.doi: 10.11896/jsjkx.240600044
侯涵中1, 张超1,2, 李德玉1,2
HOU Hanzhong1, ZHANG Chao1,2, LI Deyu1,2
摘要: 群共识决策指在面对多个备选方案时,一组个体通过集体协商,调整不同个体的意见,以确保在达成共识的前提下解决问题的过程。以空气质量评估为例探索群共识模型。首先,采用直觉模糊数来对个体评价进行表示,同时提出新型映射函数来将实数转化为直觉模糊数。其次,提出调整个体与整体相对跨度的方法来达成共识,有助于快速锁定个体和整体的差异,从而对个体评价进行调整。然后,在达成共识的基础上,采用博弈粗糙集模型,通过权衡准确性与通用性来确定阈值。在提升性能的基础上,减少边界区域的大小,从而增加决策结果的准确性。最后,通过空气质量评价的实例,验证所提方法的可行性和有效性。综上所述,该模型的提出不仅丰富了相关理论体系,有效降低了群共识决策的风险,更为复杂决策问题的解决提供了一种可行的路径。
中图分类号:
[1]DING J J,ZHANG C,LI D Y,et al.Hyperauomation for airquality evaluations:A perspective of evidential three-way decision-making[J].Cognitive Computation,2023,16(5):2437-2453. [2]XUE Z N,JING M M,LI Y X,et al.Variable precision multi-granulation covering rough intuitionistic fuzzy sets[J].Granular Computing,2023,8(3):577-596. [3]SINGH K,SINGH S.On a dual preximity measure based on intuitionistic fuzzy sets[J].Neural Computing & Applications,2023,35(8):6293-6311. [4]KHAMIS A,AHMAD A G.A note on direct product of complex intuitionistic fuzzy subfield[J].Journal of Intelligent & Fuzzy Systems,2023,45(2):2111-2132. [5]DEVECI K.Ranking intuitionistic fuzzy sets with hypervolume-based approach:An application for multi-criteria assessment of energy alterna- tives[J].Applied Soft Computing,2024,150,111038. [6]GONG Z T,WANG F D.Operation properties and(a,β)-equalities of complex intuitionistic fuzzy sets[J].Soft Computing,2023,27(8):4369-4391. [7]LIN Z Y,CHANG J Y,JENG J T.An efficient intuitionisticfuzzy sets base stations deployment strategy in internet of things systems[J].International Journal of Fuzzy Systems,2023,25(5):1882-1894. [8]GUO L,ZHAN J M,KOU G.Consensus reaching process using personalized modification rules in large-scale group decision-making[J].Information Fusion,2024,103:102-138. [9]ZHANG Z,LI Z L.A consensus-reaching model for group decision making that considers personalized individual semantics and consistency[J].Journal of Industrial Engineering and Enginee-ring Management,2023,37(6):157-168. [10]LI C C,DONG Y C,PEDRYCZ W,et al.Integrating continual personalized individual semantics learning in consensus reaching in linguistic group decision making[J].IEEE Transac tions on Systems,Man,and Cybernetics:Systems,2022,52(3):1525-1536. [11]LIANG X,GUO J,LIU P D.A consensus model considers ma-naging manipulative and overconfident behaviours in large-scale group decision-making[J].Information Sciences,2024,654:119848. [12]LU Y L,XU Y J,LI M Q.Large-scale group decision-making method based on negative behavior management and improved minimum cost consensus model in social network environment [J].Control and Decision,2024,39(1):327-335. [13]YUAN Y X,CHENG D,ZHOU Z L,et al.A minimum adjust-ment cost consensus framework considering harmony degrees and trust propagation for social network group decision making[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2023,53(3):1453-1465. [14]QIN J D,LIANG Y Y.Modeling the minimum cost consensus problem with risk preferences[J].Journal of The Operational Research Society,2023,74(1):417-429. [15]WU Z Q,ZHU K,QU S J.Distributionally robust optimization model for a minimum cost consensus with asymmetric adjustment costs based on the Wasserstein metric[J].Mathematics,2022,10(22):4312. [16]LIU P D,LI Y,ZHANG X H,et al.A multiattri -bute group decision-making method with probabilistic linguistic information based on an adaptive consensus reaching model and evidential reasoning[J].IEEE Transactions on Cybernetics,2023,53(3):1905-1919. [17]SHEN Y F,MA X L,ZHAN J M.A two-stage adaptive consensus reaching model by virtue of three-way clustering for large-scale group decision making[J].Information Sciences,2023,649:119658. [18]ZHANG J J,ZHANG C,CHEN W Z,et al.Three-way spherical fuzzy multi-attribute group decision-making based on multigranulation probab- ilistic rough sets under bounded rationality[J].Fuzzy System and Mathematics,2022,36(6):12-25. [19]HERBERT J P,YAO J T.Game-theoretic rough sets[J].Fundamenta Informaticae,2011,108(3/4):267 -286. [20]AZAM N,YAO J T.Game-theoretic rough sets for recommender systems[J].Knowledge-based Systems,2014,72:96-107. [21]AZAM N,YAO J T.Analyzing uncertainties of probabilisticrough set regions with game-theoretic rough sets[J].International Journal of Approximate Reasoning,2014,55(1):142-155. |
|