计算机科学 ›› 2023, Vol. 50 ›› Issue (10): 18-27.doi: 10.11896/jsjkx.230600049

• 粒计算与知识发现 • 上一篇    下一篇

覆盖多粒度下的形式概念更新方法

王太滨1, 李德玉1,2, 翟岩慧1,2   

  1. 1 山西大学计算机科学与技术学院 太原030006
    2 计算智能与中文信息处理教育部重点实验室(山西大学) 太原030006
  • 收稿日期:2023-06-05 修回日期:2023-07-28 出版日期:2023-10-10 发布日期:2023-10-10
  • 通讯作者: 李德玉(lidysxu@163.com)
  • 作者简介:(202022407050@email.sxu.edu.cn)
  • 基金资助:
    国家自然科学基金(61972238,62072294)

Method of Updating Formal Concept Under Covering Multi-granularity

WANG Taibin1, LI Deyu1,2, ZHAI Yanhui1,2   

  1. 1 College of Computer Science and Technology,Shanxi University,Taiyuan 030006,China
    2 Key Laboratory of Computational Intelligence and Chinese Information Processing(Shanxi University),Taiyuan 030006,China
  • Received:2023-06-05 Revised:2023-07-28 Online:2023-10-10 Published:2023-10-10
  • About author:WANG Taibin,born in 1998,master.His main research interests include granular computing and multi-scale analysis.LI Deyu,born in 1965,Ph.D.His main research interests include data mining,artificial intelligence and multi-label learning.
  • Supported by:
    National Natural Science Foundation of China(61972238,62072294).

摘要: 多粒度形式概念分析是数据挖掘与知识发现的重要工具。文中研究了覆盖多粒度下的形式概念的粗化和细化更新方法。首先,举例说明了现有的概念粗化更新算法可能导致概念缺失,通过分析缺失概念的本质特征,对现有概念粗化算法进行补充,并证明了新算法的正确性。其次,举例说明了现有的概念细化更新算法可能会生成冗余概念,通过分析冗余细概念的内涵特性,对现有的概念细化更新算法进行了优化,并证明了新算法生成结果的无冗余性,具有更低的时间复杂度。最后,通过实验验证了所提算法的有效性。

关键词: 粒计算, 形式概念分析, 多粒度形式背景, 覆盖多粒度, 概念更新

Abstract: Multi-granularity formal concept analysis is an important tool for data mining and knowledge discovery.This paper studies the methods of coarsening and refining formal concepts under multi-granularity.Firstly,it is proved that the existing concept coarsening and updating algorithms will lead to concept deletion,and the concept coarsening algorithm is supplemented and improved by analyzing the characteristics of missing concepts.Secondly,it is proved that the existing concept refinement and updating algorithms will generate redundant concepts.The time complexity is high,so the existing concept refinement updating algorithm is optimized,and the performance advantages of the proposed concept refinement algorithm are verified by time complexity analysis and comparative experiments.

Key words: Granular computing, Formal concept analysis, Muti-granularity formal context, Covering muti-granularity, Updating concept

中图分类号: 

  • TP18
[1]GANTER B,WILLE R.Formal concept analysis-mathematical foundations[M].Berlin:Springer,1999.
[2]ZHAI Y H,JIA N,ZHANG S X,et al.Study on deduction process and inference methods of decision implications[J].International Journal of Machine Learning and Cybernetics,2022,13(7):1959-1979.
[3]ZHAI Y H,QI J J,LI D Y,et al.The structure theorem of three-way concept lattice[J].International Journal of Approximate Reasoning,2022,146:157-173.
[4]SAMPATH S,SPRENKLE S,GIBSON E,et al.Applying concept analysis to user-session-based testing of web applications[J].IEEE Transactions on Software Engineering,2007,33(10):643-658.
[5]ZHANG S X,LI D Y,ZHAI Y H,et al.A comparative study of decision implication,concept rule and granular rule[J].Information Sciences,2020,508:33-49.
[6]HAO C,FAN M,LI J H,et al.Optimal Scale Selection in Multi-scale Contexts Based on Granular Scale Rules[J].Pattern Re-cognition and Artificial Intelligence,2016,29(3):272-280.
[7]NIU J J,CHEN D G,LI J H,et al.A dynamic rule-based classification model via granular computing[J].Information Sciences,2022,584:325-341.
[8]LI J H,WU W Z,DENG S.Multi-scale theory in formal concept analysis[J].Journal of Shandong University(Nature Science),2019,54(2):30-40.
[9]LI J H,WANG F,WU W Z,et al.Review of Multi-granularity Data Analysis Methods Based on Granular Computing[J].Journal of Data Acquisition and Processing,2021,36(3):418-435.
[10]BELOHLAVEK R,DE BAETS B,KONECNY J.Granularity of attributes in formal concept analysis[J].Information Sciences,2014,260:149-170.
[11]SHE Y H,HE X L,QIAN T,et al.A theoretical study on object-oriented and property-oriented multi-scale formal concept analysis[J].International Journal of Machine Learning and Cybernetics,2019,10:3263-3271.
[12]SHAO M W,LV M M,LI K W,et al.The construction of attribute(object)-oriented multi-granularity concept lattices[J].International Journal of Machine Learning and Cybernetics,2020,11:1017-1032.
[13]LI J H,HE J J.Uncertainty measurement and optimal granularity selection for multi-granularity formal context[J].Journal of Control and Decision,2022,37(5):1299-1308.
[14]HU Q,QIN K Y.The construction of multi-granularity concept lattices[J].Journal of Intelligent & Fuzzy Systems,2020,39:2783-2790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!