计算机科学 ›› 2025, Vol. 52 ›› Issue (2): 323-335.doi: 10.11896/jsjkx.240200015
孙锐, 王菲, 冯惠东, 张旭东, 高隽
SUN Rui, WANG Fei, FENG Huidong, ZHANG Xudong, GAO Jun
摘要: 随着人脸识别技术广泛应用于公共安全、金融支付等领域,呈现攻击(Presentation Attacks,PAs)对人脸识别系统的安全性构成了威胁。呈现攻击检测技术(Presentation Attacks Detection,PAD)旨在判断输入人脸的真伪,对维护识别系统的安全性和鲁棒性具有重要的研究意义。由于大规模数据集的不断涌现,基于深度学习的呈现攻击检测方法逐渐成为该领域的主流。文章对近期基于深度学习的人脸呈现攻击检测方法进行了综述。首先,概述了呈现攻击检测的定义、实施方式和常见的攻击类型;其次,分别从单模态和多模态入手,对近五年来深度学习类方法的发展趋势、技术原理和优缺点进行详细分析和总结;然后,介绍了PAD研究中使用的典型数据集及其特点,并给出算法的评估标准、协议和性能结果;最后,总结了PAD研究中面临的主要问题并展望了未来的发展趋势。
中图分类号:
[1]BOULKENAFET Z,KOMULAINEN J,HADID A.Face anti-spoofing using speeded-up robust features and fisher vector encoding[J].IEEE Signal Processing Letters,2016,24(2):141-145. [2]ISO/IEC 30107-3:2016.Information technology-Biometric pre-sentation attack detection-Part 1:Framework(First Edition) [S].Geneva:International Organization for Standardization/International Electrotechnical Commission(ISO/IEC),2016. [3]GALBALLY J,MARCELS,FIERREZ J.Image quality assess-ment for fake biometric detection:Application to iris,fingerprint,and face recognition[J].IEEE Transactions on Image Processing,2013,23(2):710-724. [4]HADID A.Face biometrics under spoofing attacks:Vulnerabilities,countermeasures,open issues,and research directions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2014:113-118. [5]YU Z,QIN Y,LI X,et al.Deep learning for face anti-spoofing:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(5):5609-5631. [6]LU Z Q,LU Z M,SHEN F L,et al.Overview of face anti-spoofing live detection[J].Journal of Information Security,2020,5(2):18-27. [7]ZHANG F,ZHAO S K,YUAN C,et al.Research progress on anti fraud in facial recognition [J].Journal of Software,2022,33(7):2411-2446. [8]PINTO A,GOLDENSTEIN S,FERREIRA A,et al.Leveraging shape,reflectance and albedo from shading for face presentation attack detection[J].IEEE Transactions on Information Forensics and Security,2020,15:3347-3358. [9]SHEN C,HE X P.Facial anti-counterfeiting algorithm based on texture feature enhancement and lightweight network [J].Computer Science,2022,49(6A):390-396. [10]ZHANG P,ZOU F,WU Z,et al.FeatherNets:Convolutionalneural networks as light as feather for face anti-spoofing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019. [11]CAI R,LI H,WANG S,et al.DRL-FAS:A novel frameworkbased on deep reinforcement learning for face anti-spoofing[J].IEEE Transactions on Information Forensics and Security,2020,16:937-951. [12]HUANG P K,CHIANG C H,CHONG J X,et al.LDCformer:Incorporating Learnable Descriptive Convolution to Vision Transformer for Face Anti-Spoofing[C]//2023 IEEE International Conference on Image Processing(ICIP).IEEE,2023:121-125. [13]LEE Y,KWAK Y,SHIN J.Robust face anti-spoofing frame-work with Convolutional Vision Transformer[C]//2023 IEEE International Conference on Image Processing(ICIP).IEEE,2023:1015-1019. [14]WANG Z,YU Z,ZHAO C,et al.Deep spatial gradient and temporal depth learning for face anti-spoofing[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:5042-5051. [15]YU Z,WAN J,QIN Y,et al.NAS-FAS:Static-dynamic central difference network search for face anti-spoofing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(9):3005-3023. [16]YU Z,QIN Y,ZHAO H,et al.Dual-cross central difference network for face anti-spoofing[J].arXiv:2105.01290,2021. [17]YU B,LU J,LI X,et al.Salience-aware face presentation attack detection via deep reinforcement learning[J].IEEE Transactions on Information Forensics and Security,2021,17:413-427. [18]GEORGE A,MARCEL S.Deep pixel-wise binary supervisionfor face presentation attack detection[C]//2019 International Conference on Biometrics(ICB).IEEE,2019:1-8. [19]YU Z,QIN Y,XU X,et al.Auto-fas:Searching lightweight networks for face anti-spoofing[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Proces-sing(ICASSP).IEEE,2020:996-1000. [20]YU Z,LI X,SHI J,et al.Revisiting pixel-wise supervision for face anti-spoofing[J].IEEE Transactions on Biometrics,Beha-vior,and Identity Science,2021,3(3):285-295. [21]QIN Y,YU Z,YAN L,et al.Meta-teacher for face anti-spoofing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(10):6311-6326. [22]YU Z,LI X,NIU X,et al.Face anti-spoofing with human material perception[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,August 23-28,2020,Procee-dings,Part VII 16.Springer International Publishing,2020:557-575. [23]SUN W,SONG Y,CHEN C,et al.Face spoofing detection based on local ternary label supervision in fully convolutional networks[J].IEEE Transactions on Information Forensics and Security,2020,15:3181-3196. [24]LI X,WAN J,JIN Y,et al.3DPC-Net:3D point cloud network for face anti-spoofing[C]//2020 IEEE International Joint Conference on Biometrics(IJCB).IEEE,2020:1-8. [25]ZHENG W,YUE M,ZHAO S,et al.Attention-based spatial-temporal multi-scale network for face anti-spoofing[J].IEEE Transactions on Biometrics,Behavior,and Identity Science,2021,3(3):296-307. [26]MING Z,YU Z,AL-GHADI M,et al.Vitranspad:video transformer using convolution and self-attention for face presentation attack detection[C]//2022 IEEE International Conference on Image Processing(ICIP).IEEE,2022:4248-4252. [27]CHEN H,HU G,LEI Z,et al.Attention-based two-stream convolutional networks for face spoofing detection[J].IEEE Tran-sactions on Information Forensics and Security,2019,15:578-593. [28]JIA S,LI X,HU C,et al.3D face anti-spoofing with factorized bi-linear coding[J].IEEE Transactions on Circuits and Systems for Video Technology,2020,31(10):4031-4045. [29]LI H,LI W,CAO H,et al.Unsupervised domain adaptation for face anti-spoofing[J].IEEE Transactions on Information Forensics and Security,2018,13(7):1794-1809. [30]TU X,ZHANG H,XIE M,et al.Deep transfer across domains for face anti-spoofing[J].Journal of Electronic Imaging,2019,28(4):043001. [31]WANG G,HAN H,SHAN S,et al.Unsupervised adversarial domain adaptation for cross-domain face presentation attack detection[J].IEEE Transactions on Information Forensics and Security,2020,16:56-69. [32]ZHOU L,LUO J,GAO X,et al.Selective domain-invariant feature alignment network for face anti-spoofing[J].IEEE Tran-sactions on Information Forensics and Security,2021,16:5352-5365. [33]FENG Y,SHI Y C,GAO Y H,et al.Domain adaptive facial anti fraud based on quadratic decoupling and progressive alignment of live features [J].Computer Research and Development,2023,60(8):1727-1739. [34]JIA Y,ZHANG J,SHAN S,et al.Single-side domain generalization for face anti-spoofing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:8484-8493. [35]HONG Z W,LIN Y C,LIU H T,et al.Domain-Generalized FaceAnti-Spoofing with Unknown Attacks[C]//2023 IEEE International Conference on Image Processing(ICIP).IEEE,2023:820-824. [36]LIAO C H,CHEN W C,LIU H T,et al.Domain Invariant Vision Transformer Learning for Face Anti-spoofing[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:6098-6107. [37]LI D,YANG Y,SONG Y Z,et al.Learning to generalize:Meta-learning for domain generalization [C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [38]LIN J D,LIN H H,DY J,et al.Lightweight face anti-spoofing network for telehealth applications[J].IEEE Journal of Biome-dical and Health Informatics,2021,26(5):1987-1996. [39]CHEN Z,YAO T,SHENG K,et al.Generalizable representation learning for mixture domain face anti-spoofing[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:1132-1139. [40]QIN Y,ZHAO C,ZHU X,et al.Learning meta model for zero-and few-shot face anti-spoofing[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:11916-11923. [41]PÉREZ-CABO D,JIMÉNEZ-CABELLO D,COSTA-PAZO A,et al.Learning to Learn Face-PAD:a lifelong learning approach[C]//2020 IEEE International Joint Conference on Biometrics(IJCB).IEEE,2020:1-9. [42]WANG C Y,LU Y D,YANG S T,et al.Patchnet:A simple face anti-spoofing framework via fine-grained patch recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:20281-20290. [43]XIONG F,ABDALMAGEED W,Unknown presentation attack detection with face rgb images[C]//2018 IEEE 9th Interna-tional Conference on Biometrics Theory,Applications and Systems(BTAS).IEEE,2018:1-9. [44]FATEMIFAR S,AWAIS M,AKBARI A,et al.A stacking ensemble for anomaly based client-specific face spoofing detection[C]//2020 IEEE International Conference on Image Processing(ICIP).IEEE,2020:1371-1375. [45]FATEMIFAR S,ARASHLOO S R,AWAIS M,et al.Client-specific anomaly detection for face presentation attack detection[J].Pattern Recognition,2021,112:107696. [46]PÉREZ-CABO D,JIMÉNEZ-CABELLO D,COSTA-PAZO A,et al.Deep anomaly detection for generalized face anti-spoofing[C]//Proceedings of the IEEE/CVF Conferenceon Computer Vision and Pattern Recognition Workshops.2019. [47]GEORGE A,MARCEL S.Learning one class representations for face presentation attack detection using multi-channel con-volutional neural networks[J].IEEE Transactions on Information Forensicsand Security,2020,16:361-375. [48]JIANG F,LIU P,SHAO X,et al.Face anti-spoofing with gene-rated near-infrared images[J].Multimedia Tools and Applications,2020,79:21299-21323. [49]LIU A,TAN Z,WAN J,et al.Face anti-spoofing via adversarialcross-modality translation[J].IEEE Transactions on Information Forensics and Security,2021,16:2759-2772. [50]KOTWAL K,MARCEL S.CNN patch pooling for detecting 3D mask presentation attacks in NIR[C]//2020 IEEE International Conference on Image Processing(ICIP).IEEE,2020:1336-1340. [51]DENG P,GE C,WEI H,et al.Attention-aware dual-stream network for multimodal face anti-spoofing[J].IEEE Transactions on In-formation Forensics and Security,2023,18:4258-4271. [52]WANG Y,SONG X,XU T,et al.From RGB to depth:domain transfer network for face anti-spoofing[J].IEEE Transactions on Information Forensics and Security,2021,16:4280-4290. [53]SUN X,HUANG L,LIU C.Multimodal face spoofing detection via RGB-D images[C]//2018 24th International Conference on Pattern Recognition(ICPR).IEEE,2018:2221-2226. [54]CHEN S,LI W,YANG H,et al.3d face mask anti-spoofing via deep fusion of dynamic texture and shape clues[C]//2020 15th IEEE International Conference on Automatic Face and Gesture Recognition(FG 2020).IEEE,2020:314-321. [55]GEORGE A,MARCEL S,Cross modal focal loss for rgbd face anti-spoofing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:7882-7891. [56]JIA Y,ZHANG J,SHAN S.Dual-branch meta-learning network with distribution alignment for face anti-spoofing[J].IEEE Transactions on Information Forensics and Security,2021,17:138-151. [57]CHUANG C C,WANG C Y,LAI S H.Generalized Face Anti-Spoofing via Multi-Task Learning and One-Side Meta Triplet Loss[C]//2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition(FG).IEEE,2023:1-8. [58]ZHANG S,WANG X,LIU A,et al.A dataset and benchmark for large-scale multi-modal face anti-spoofing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:919-928. [59]ZHANG S,LIU A,WAN J,et al.Casia-surf:A large-scalemulti-modal benchmark for face anti-spoofing[J].IEEE Tran-sactions on Biometrics,Behavior,and Identity Science,2020,2(2):182-193. [60]PARKIN A,GRINCHUK O.Recognizing multi-modal facespoofing with face recognition networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019. [61]SHEN T,HUANG Y,TONG Z.FaceBagNet:Bag-of-local-features model for multi-modal face anti-spoofing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019. [62]ZHOU Q,YANG M,CHEN S,et al.Multi-modal Face Anti-spoofing Using Multi-fusion Network and Global Depth-wise Convolution[C]//2022 International Joint Conference on Neural Networks(IJCNN).IEEE,2022:1-8. [63]LIU W,WEI X,LEI T,et al.Data-fusion-based two-stage cascade framework for multimodality face anti-spoofing[J].IEEE Transactions on Cognitive and Developmental Systems,2021,14(2):672-683. [64]LIU A,TAN Z,YU Z,et al.Fm-vit:Flexible modal vision trans-formers for face anti-spoofing[J].arXiv:2305.03277,2023. [65]GEORGE A,MOSTAANI Z,GEISSENBUHLER D,et al.Biometric face presentation attack detection with multi-channel convolutional neural network[J].IEEE Transactions on Information Forensics and Security,2019,15:42-55. [66]WANG W,WEN F,ZHENG H,et al.Conv-mlp:A convolution and mlp mixed model for multimodal face anti-spoofing[J].IEEE Transactions on Information Forensics and Security,2022,17:2284-2297. [67]JI Q,XU S,CHEN X,et al.A cross domain multi-modal dataset for robust face anti-spoofing[C]//2020 25th International Conference on Pattern Recognition(ICPR).IEEE,2021:4309-4316. [68]LIU A,TAN Z,WAN J,et al.Casia-surf cefa:A benchmark for multi-modal cross-ethnicity face anti-spoofing[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2021:1179-1187. [69]CHEN X,XU S,JI Q,et al.A dataset and benchmark towards multi-modal face anti-spoofing under surveillance scenarios[J].IEEE Access,2021,9:28140-28155. [70]CHINGOVSKA I,ANJOS A,MARCEL S.On the effectiveness of local binary patterns in face anti-spoofing[C]//Proceedings of the International Conference of Biometrics Special Interest Group(BIOSIG).IEEE,2012:1-7. [71]BOULKENAFET Z,KOMULAINEN J,LI L,et al.OULU-NPU:A mobile face presentation attack database with real-world variations[C]//2017 12th IEEE International Conference on Automatic Face & Gesture Recognition.IEEE,2017:612-618. [72]LIU Y,JOURABLOO A,LIU X.Learning deep models for face anti-spoofing:Binary or auxiliary supervision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:389-398. [73]ERDOGMUS N,MARCEL S.Spoofing face recognition with 3D masks[J].IEEE Transactions on Information Forensics and Security,2014,9(7):1084-1097. [74]VARETO R H,SALDANHA A M,SCHWARTZ W R.Theswax benchmark:attacking biometric systems with wax figures[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2020:986-990. [75]ISO/IE30107-3-2017.Information technology-Biometric presentation attack detection-Part 3:Testing and reporting(First Edition)[S].Geneva:International Organization for Standardization,2017. [76]LIU Y,STEHOUWER J,JOURABLOO A,et al.Deep treelearning for zero-shot face anti-spoofing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4680-4689. |
|