计算机科学 ›› 2025, Vol. 52 ›› Issue (2): 336-343.doi: 10.11896/jsjkx.240300031
丁瑞阳1, 孙磊1, 戴乐育1, 臧韦菲1, 徐八一1,2
DING Ruiyang1, SUN Lei1, DAI Leyu1, ZANG Weifei1, XU Bayi1,2
摘要: 人工智能技术在网络流量分类领域表现出了巨大潜力,对网络空间安全的战略格局产生了深刻影响。但也有研究发现,深度学习模型有着严重的脆弱性,针对该脆弱性衍生的对抗样本可以大幅度降低模型检测的正确率。目前对抗样本在图像分类领域得到了广泛深入的研究,在网络流量分类领域还处于发展阶段。现有的对抗网络流量技术仅对特定样本有效,并且时间开销较大、实用性低。为此,提出了基于通用扰动的对抗网络流量生成方法,其利用空间特征分布的性质寻找通用扰动向量,将该扰动添加到正常流量生成对抗网络流量,令网络流量分类器以高概率检测错误。在Moore和ISCX2016数据集上与现有方法进行了实验测试。结果表明,同等条件下,该方法生成对抗网络流量攻击分类器时对Moore和ISCX2016数据集内样本均有效,成功率高达80%以上;并且可以有效攻击不同的分类器,具有模型迁移性效果;同时实现了对抗网络流量的快速生成,平均生成时间开销低于1 ms,效率远优于现有方法。
中图分类号:
[1]CHALAPATHY R,CHAWLA S.Deep Learning for Anomaly Detection:A Survey[J].arXiv:1901.03407,2019. [2]JIN K,ZHANG L,ZHANG Y J,et al.A Network Traffic Intrusion Detection Method for Industrial Control Systems Based on Deep Learning[J].Electronics,2023,12(20):4329. [3]KWON D,KIM H,KIM J,et al.A survey of deep learning-based network anomaly detection[J].Cluster Computing,2019,22:949-961. [4]LASHKARI A H,KADIR A F A,GONZALEZ H,et al.Towards a network-based framework for android malware detection and characterization[C]//2017 15th Annual Conference on Privacy,Security and Trust(PST).IEEE,2017. [5]RING M,LANDES D,HOTHO A.Detection of slow port scans in flow-based network traffic[J].PLoS One,2018,13(9):e0204507. [6]LIU J X,SONG X C,ZHOU Y J,et al.Deep anomaly detection in packet payload[J].Neuro computing,2022,485:205-218. [7]REZAEI S,LIU X.Deep learning for encrypted traffic classification:An overview[J].IEEE Communications Sagazine,2019,57(5):76-81. [8]ABBASI M,SHAHRAKI A,TAHERKORDI A.Deep learning for network traffic monitoring and analysis(NTMA):A survey[J].Computer Communications,2021,170:19-41. [9]LI J W,PAN Z S.Network traffic classification based on deep learning[J].KSII Transactions on Internet and Information Systems(TIIS),2020,14(11):4246-4267. [10]LIM H K,KIM J B,HEO J S,et al.Packet-based network traffic classification using deep learning[C]//2019 International Conference on Artificial Intelligence in Information and Communication(ICAIIC).IEEE,2019:46-51. [11]SADEGHZADEH A M,SHIRAVI S,JALILI R.Adversarialnetwork traffic:Towards evaluating the robustness of deep-learning-based network traffic classification[J].IEEE Transactions on Network and Service Management,2021,18(2):1962-1976. [12]WANG Y,LU B,ZHU Y F.Generation and Application of Adversarial Network Traffic:A Survey [J].Computer Science,2022,49(S2):651-661. [13]HU Y J,GUO Y B,MA J,et al.Method to generate cyber deception traffic based on adversarial sample [J].Journal on Communication/Tongxin Xuebao,2020,41(9):59-70. [14]RIGAKI M.Adversarial deep learning against intrusion detection classifiers[J].EUR Workshop Proceedings,2017,2057:35-48. [15]IBITOYE O,SHAFIQ O,MATRAWY A.Analyzing adversarial attacks against deep learning for intrusion detection in IoT networks[C]//2019 IEEE Global Communications Conference(GLOBECOM).IEEE,2019:1-6. [16]HU Y J,TIAN J,MA J.A novel way to generate adversarial network traffic samples against network traffic classification[J].Wireless Communications and Mobile Computing,2021,2021:1-12. [17]YAN Q,WANG M D,HUANG W Y,et al.Automatically synthesizing DoS attack traces using generative adversarial networks[J].International Journal of Machine Learning and Cybernetics,2019,10(12):3387-3396. [18]HASHEMI M J,CUSACK G,KELLER E.Towards evaluation of nidss in adversarial setting[C]//Proceedings of the 3rd ACM Conext Workshop on Big Data,Machine Learning and Artificial Intelligence for Data Communication Networks.2019:14-21. [19]USAMA M,QAYYUM A,QADIR J,et al.Black-box adversa-rial machine learning attack on network traffic classification[C]//2019 15th International Wireless Communications & Mobile Computing Conference(IWCMC).IEEE,2019:84-89. [20]MOOSAVI-DEZFOOLI S M,FAWZI A,FAWZI O,et al.Universal adversarial perturbations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1765-1773. [21]KRUPSKI J,GRANISZEWSKI W,IWANOWSKI M.Datatransformation schemes for cnn-based network traffic analysis:A survey[J].Electronics,2021,10(16):2042. [22]MOORE A W,ZUEV D.Internet traffic classification usingbayesian analysis techniques[C]//Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems.Banff,2005:50-60. [23]DRAPER-GIL G,LASHKARI A H,MAMUN M S I,et al.Characterization of encrypted and vpn traffic using time-related[C]//Proceedings of the 2nd International Conference on Information Systems Security and Privacy(ICISSP).2016:407-414. [24]YANG Y H,SUN L,DAI L Y,et al.Generate Transferable Adversarial Network Traffic Using Reversible Adversarial Padding[J].Computer Science,2023,50(12):359-367. |
|