计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 139-148.doi: 10.11896/jsjkx.240200078
吴鹏远, 方伟
WU Pengyuan, FANG Wei
摘要: 基于图协同过滤的推荐技术因能高效处理大规模交互数据而备受关注,但现实场景中的数据稀疏性问题限制了其有效性。对比学习应用于图协同过滤可以增强其在数据稀疏性上的性能,但现有方法通常通过随机抽样方式构建对比对,未能充分发掘对比学习在推荐系统中的潜力。为此,提出一种基于特征网络对比学习的图协同过滤模型(FeatureNet Contrastive Learning,FCL)。该模型通过计算特征向量之间的余弦相似度和概率归一化策略建立节点特征相似度矩阵,再使用对比学习对节点特征相似度矩阵进行影响力分析以捕捉节点间的高阶连接性,还引入随机扰动来增强模型的鲁棒性。在多个数据集上进行大量实验,验证了所提模型的有效性,尤其在处理高稀疏度数据集时,效果更为明显。
中图分类号:
[1]RICCI F,ROKACH L,SHAPIRA B.Introduction to Recommender Systems Handbook [M]//Recommender Systems Handbook.Boston,MA:Springer.2011:1-35. [2]LINDEN G,SMITH B,YORK J.Amazon.com recommendations:item-to-item collaborative filtering [J].IEEE Internet Computing,2003,7(1):76-80. [3]GOMEZ-URIBE C A,HUNT N.The Netflix RecommenderSystem:Algorithms,Business Value,and Innovation [J].ACM Trans Manage Inf Syst,2016,6(4):1-19. [4]SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms [C]//Proceedings of the 10th International Conference on World Wide Web.2001:285-295. [5]HE X,LIAO L,ZHANG H,et al.Neural Collaborative Filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182. [6]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation [C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648. [7]WANG X,HE X,WANG M,et al.Neural Graph Collaborative Filtering [C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [8]WU J,WANG X,FENG F,et al.Self-supervised Graph Learning for Recommendation [C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:726-735. [9]SUN J,ZHANG Y,MA C,et al.Multi-graph convolution collaborative filtering [C]//2019 IEEE International Conference on Data Mining(ICDM).2019:1306-1311. [10]WU L,SUN P,FU Y,et al.A Neural Influence Diffusion Model for Social Recommendation [C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:235-244. [11]YU L,DU Q H,YUE B Y,et al.Survey of ReinforcementLearning Based Recommender Systems[J].Computer Science,2021,48(10):1-18. [12]LIN Z,TIAN C,HOU Y,et al.Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning [C]//Proceedings of the ACM Web Conference 2022.2022:2320-2329. [13]GORI M,PUCCI A.ItemRank:a random-walk based scoring algorithm for recommender engines [C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence.2007:2766-2771. [14]BALUJA S,SETH R,SIVAKUMAR D,et al.Video suggestion and discovery for youtube:taking random walks through the view graph [C]//Proceedings of the 17th International Conference on World Wide Web.2008:895-904. [15]KABBUR S,NING X,KARYPIS G.FISM:factored item similarity models for top-N recommender systems [C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2013:659-667. [16]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback [C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.2009:452-461. [17]LI J,ZHOU P,XIONG C,et al.Prototypical contrastive learning of unsupervised representations [J].arXiv:2005,04966,2020. [18]LIANG M X,WANG S,ZHU J W,et al.Survey of Knowledge-enhanced Natural Language Generation Research[J/OL].https://www.jsjkx.com/CN/article/openArticlePDF.jsp?id=21572. [19]GIORGI J,NITSKI O,WANG B,et al.Declutr:Deep contras-tive learning for unsupervised textual representations [J].arXiv:2006,03659,2020. [20]CHEN T,KORNBLITH S,NOROUZI M,et al.A simpleframework for contrastive learning of visual representations [C]//Proceedings of the 37th International Conference on Machine Learning.2020. [21]GRILL J B,STRUB F,ALTCHÉ F,et al.Bootstrap your own latent-a new approach to self-supervised learning [J].Advances in neural information processing systems,2020,33:21271-21284. [22]HE K M,FAN H Q,WU Y X,et al.Momentum Contrast forUnsupervised Visual Representation Learning [C]//Procee-dings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2020:9726-9735. [23]CESAR L B,CALLEJO M Á M,CIRA C I.Bidirectional Encoder Representation from Transformers(BERT) Variants for Procedural Long-Form Answer Extraction [J].Engineering Proceedings,2022,39(1):71-76. [24]CARLSSON F,GYLLENSTEN A C,GOGOULOU E,et al.Semantic Re-tuning with Contrastive Tension [C]//International Conference on Learning Representations.2021:157-169. [25]OORD A V D,LI Y,VINYALS O.Representation Learningwith Contrastive Predictive Coding [J].arXiv:8070,3748,2018. [26]HAMILTON W L,YING R,LESKOVEC J.Inductive representation learning on large graphs [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035. [27]RADFORD A,KIM J W,HALLACY C,et al.Learning Transferable Visual Models From Natural Language Supervision [C]//Proceedings of the 38th International Conference on Machine Learning.2021:8748-8763. [28]LU J,BATRA D,PARIKH D,et al.ViLBERT:PretrainingTask-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks [C]//Neural Information Processing Systems.2019:13-23. [29]CHEN D,SONG H Z,ZHANG J,et al.Entity Recognition Fusing BERT and Memory Networks[J].Computer Science,2021,48(10):91-97. [30]LIN Z,TIAN C,HOU Y,et al.Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning [C]//Proceedings of the ACM Web Conference.2022:2320-2329. [31]WANG X,JIN H,ZHANG A,et al.Disentangled Graph Collab-orative Filtering [C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:1001-1010. [32]MOON T K.The expectation-maximization algorithm [J].IEEE Signal processing magazine,1996,13(6):47-60. [33]HARPER F M,KONSTAN J A.The MovieLens Datasets [J].ACM Transactions on Interactive Intelligent Systems(TIIS),2015,5(4):1-19. [34]MCAULEY J,TARGETT C,SHI Q,et al.Image-Based Recommendations on Styles and Substitutes [C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.2015:43-52. [35]CHO E,MYERS S A,LESKOVEC J.Friendship and mobility:user movement in location-based social networks [C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2011:1082-1090. [36]ZHAO W X,CHEN J,WANG P,et al.Revisiting AlternativeExperimental Settings for Evaluating Top-N Item Recommendation Algorithms [C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.2020:2329-2332. [37]YOU Y,CHEN T,SUI Y,et al.Graph contrastive learning with augmentations [C]//Proceedings of the 34th International Conference on Neural Information Processing Systems.2020. |
|