计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 88-95.doi: 10.11896/jsjkx.241100026
王枭1,2, 李冠雄3, 李娜1,2, 袁东风4,5
WANG Xiao1,2, LI Guanxiong3, LI Na1,2, YUAN Dongfeng4,5
摘要: 深度学习在飞机设计中备受瞩目,特别是在AI for Science的推动下,基于神经网络的数据驱动方法在翼型流场预测方面取得了显著成功。然而,在标注数据有限的情况下,这些方法往往表现欠佳。针对该问题,提出了一种名为 Semi-Flow 的半监督学习方法,用于翼型流场预测。Semi-Flow 利用神经网络的损失记忆特性,根据损失函数值,将伪标签数据分为简单和困难两个子集。这种聚类方法基于高斯混合模型,将损失函数结合数据损失和辅助物理监督,确保模型结果符合气动特性和数据约束。在数据选择过程中,选择两个模型共同的简单样本作为训练样本,避免噪声样本的影响。训练过程首先对标注样本进行几轮热身训练,然后逐步添加经过过滤的简单样本。实验结果表明,Semi-Flow 方法在标记数据有限的情况下相比于仅基于少量标记数据训练表现优异,总体预测性能提升了近30%。消融研究和定性结果验证了其有效性。Semi-Flow展示了 AI for Science 的潜力,通过减少对大量标注数据的依赖,为流场预测提供了有前景的方法。
中图分类号:
[1]ANDERSON J D,WENDT J.Computational fluid dynamics:volume 206 [M].Springer,1995. [2]VAN NOORDEN R,PERKEL J M.AI and Science:what1,600researchers think[J].Nature,2023,621(7980):672-675. [3]XU Z M.Ai4science:Neural networks for molecular propertyprediction[EB/OL].https://zhiming-xu.github.io/files/Molecular_GNN.pdf. [4]RAISSI M,PERDIKARIS P,KARNIADAKIS G E.Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].Journal of Computational Physics,2019,378:686-707. [5]LU L,JIN P,PANG G,et al.Learning nonlinear operators via deeponet based on the universal approximation theorem of ope-rators[J].Nature Machine Intelligence,2021,3(3):218-229. [6]RAZAVIAN A S,AZIZPOUR H,SULLIVAN J,et al.CNNfeatures off-the-shelf:an astounding baseline for recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2014:806-813. [7]SHI W,RAJKUMAR R.Point-GNN:Graph neural network for 3d object detection in a point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1711-1719. [8]GUO X,LI W,IORIO F.Convolutional neural networks forsteady flow approximation[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:481-490. [9]PARK J J,FLORENCE P,STRAUB J,et al.Deepsdf:Learning continuous signed distance functions for shape representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:165-174. [10]DENG K,CHEN H,ZHANG Y.Flow structure oriented opti-mization aided by deep neural network[C]//10th International Conference on Computational Fluid Dynamics(ICCFD10).2018. [11]THUEREY N,WEISSENOW K,PRANTL L,et al.Deep learning methods for reynolds-averaged navier-stokes simulations of airfoil flows[J].AIAA Journal,2020,58(1):25-36. [12]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,2015:234-241. [13]XU Z H,CHEN X L,LI J,et al.Graph Hypersphere Prototype Network for Semi-supervised Few-shot Node Classification.Journal of Chinese Computer Systems,2025,46(3):542-551. [14]SANCHEZ-GONZALEZ A,GODWIN J,PFAFF T,et al.Learning to simulate complex physics with graph networks[C]//International Conference on Machine Learning.PMLR,2020:8459-8468. [15]CHEN J,HACHEM E,VIQUERAT J.Graph neural networks for laminar flow prediction around random two-dimensional shapes[J].Physics of Fluids,2021,33(12):123607. [16]YANG Z,DONG Y,DENG X,et al.Amgnet:Multi-scale graph neural networks for flow field prediction[J].Connection Science,2022,34(1):2500-2519. [17]WANDEL N,WEINMANN M,KLEIN R.Learning incom-pressible fluid dynamics from scratch-towards fast,differentiable fluid models that generalize[J].arXiv:2006.08762,2020. [18]TOME M F,MCKEE S.Gensmac:A computational marker and cell method for free surface flows in general domains[J].Journal of Computational Physics,1994,110(1):171-186. [19]GAO H,SUN L,WANG J X.Phygeonet:Physics-informed geometryadaptive convolutional neural networks for solving parameterized steadystate pdes on irregular domain[J].Journal of Computational Physics,2021,428:110079. [20]LU L,JIN P Z,PANG G F,et al.Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J].Nature Machine Intelligence,2021,3:218-229. [21]WANG J,HE C,LI R,et al.Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework[J].Physics of Fluids,2021,33(8):086108. [22]JIANG J,LI G,JIANG Y,et al.Transcfd:A transformer-based decoder for flow field prediction[J].Engineering Applications of Artificial Intelligence,2023,123:106340. [23]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need [C]//Proceedings of the 31 International Conference on Neural Information Processing Systems.2017:6000-6010. [24]WANG X,DONG Y,ZOU S,et al.A semi-supervised framework for computational fluid dynamics prediction[J].Applied Soft Computing,2024,154:111422. [25]WEISS K,KHOSHGOFTAAR T M,WANG D.A survey oftransfer learning[J].Journal of Big data,2016,3(1):1-40. [26]LAI W S,HUANG J B,YANG M H.Semi-supervised learning for optical flow with generative adversarial networks[C]//Advances in Neural Information Processing Systems.2017. [27]WANG X,JIANG Y,LI G,et al.Sag-flownet:self-attentiongenerative network for airfoil flow field prediction[J].Soft Computing,2024,28:7417-7437. [28]WANG X,ZOU S,JIANG Y,et al.Swin-FlowNet:Flow field oriented optimization aided by a CNN and Swin-Transformer based model[J].Journal of Computational Science,2023,72:102121. [29]WU H Z,LIU X J,AN W,et al.A generative deep learning framework for airfoil flow field prediction with sparse data[J].Chinese Journal of Aeronautics,2022,35(1):470-484. [30]REYNOLDS D A.Gaussian mixture models[M]//Encyclopedia of Biometrics.Boston,MA:Springer,2009:659-663. [31]YIN X,CHEN S,HU E.Regularized soft k-means for discriminant analysis[J].Neurocomputing,2013,103:29-42. [32]ROGERS D F.An introduction to NUBRBS:with historical perspective[M].Morgan Kaufmann,2001. [33]BLASINGAME T,JOHNSTON J,LEE W.Type-curve analysis using the pressure integral method[C]//SPE Western Regional Meeting.SPE,1989. [34]LOH W L.On latin hypercube sampling[J].The Annals of Statistics,1996,24(5):2058-2080. [35]LOSHCHILOV I,HUTTER F.Decoupled weight decay regularization[J].arXiv:1711.05101,2017. |
|