Computer Science ›› 2025, Vol. 52 ›› Issue (6): 88-95.doi: 10.11896/jsjkx.241100026
• High Performance Computing • Previous Articles Next Articles
WANG Xiao1,2, LI Guanxiong3, LI Na1,2, YUAN Dongfeng4,5
CLC Number:
[1]ANDERSON J D,WENDT J.Computational fluid dynamics:volume 206 [M].Springer,1995. [2]VAN NOORDEN R,PERKEL J M.AI and Science:what1,600researchers think[J].Nature,2023,621(7980):672-675. [3]XU Z M.Ai4science:Neural networks for molecular propertyprediction[EB/OL].https://zhiming-xu.github.io/files/Molecular_GNN.pdf. [4]RAISSI M,PERDIKARIS P,KARNIADAKIS G E.Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].Journal of Computational Physics,2019,378:686-707. [5]LU L,JIN P,PANG G,et al.Learning nonlinear operators via deeponet based on the universal approximation theorem of ope-rators[J].Nature Machine Intelligence,2021,3(3):218-229. [6]RAZAVIAN A S,AZIZPOUR H,SULLIVAN J,et al.CNNfeatures off-the-shelf:an astounding baseline for recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2014:806-813. [7]SHI W,RAJKUMAR R.Point-GNN:Graph neural network for 3d object detection in a point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1711-1719. [8]GUO X,LI W,IORIO F.Convolutional neural networks forsteady flow approximation[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:481-490. [9]PARK J J,FLORENCE P,STRAUB J,et al.Deepsdf:Learning continuous signed distance functions for shape representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:165-174. [10]DENG K,CHEN H,ZHANG Y.Flow structure oriented opti-mization aided by deep neural network[C]//10th International Conference on Computational Fluid Dynamics(ICCFD10).2018. [11]THUEREY N,WEISSENOW K,PRANTL L,et al.Deep learning methods for reynolds-averaged navier-stokes simulations of airfoil flows[J].AIAA Journal,2020,58(1):25-36. [12]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,2015:234-241. [13]XU Z H,CHEN X L,LI J,et al.Graph Hypersphere Prototype Network for Semi-supervised Few-shot Node Classification.Journal of Chinese Computer Systems,2025,46(3):542-551. [14]SANCHEZ-GONZALEZ A,GODWIN J,PFAFF T,et al.Learning to simulate complex physics with graph networks[C]//International Conference on Machine Learning.PMLR,2020:8459-8468. [15]CHEN J,HACHEM E,VIQUERAT J.Graph neural networks for laminar flow prediction around random two-dimensional shapes[J].Physics of Fluids,2021,33(12):123607. [16]YANG Z,DONG Y,DENG X,et al.Amgnet:Multi-scale graph neural networks for flow field prediction[J].Connection Science,2022,34(1):2500-2519. [17]WANDEL N,WEINMANN M,KLEIN R.Learning incom-pressible fluid dynamics from scratch-towards fast,differentiable fluid models that generalize[J].arXiv:2006.08762,2020. [18]TOME M F,MCKEE S.Gensmac:A computational marker and cell method for free surface flows in general domains[J].Journal of Computational Physics,1994,110(1):171-186. [19]GAO H,SUN L,WANG J X.Phygeonet:Physics-informed geometryadaptive convolutional neural networks for solving parameterized steadystate pdes on irregular domain[J].Journal of Computational Physics,2021,428:110079. [20]LU L,JIN P Z,PANG G F,et al.Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J].Nature Machine Intelligence,2021,3:218-229. [21]WANG J,HE C,LI R,et al.Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework[J].Physics of Fluids,2021,33(8):086108. [22]JIANG J,LI G,JIANG Y,et al.Transcfd:A transformer-based decoder for flow field prediction[J].Engineering Applications of Artificial Intelligence,2023,123:106340. [23]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need [C]//Proceedings of the 31 International Conference on Neural Information Processing Systems.2017:6000-6010. [24]WANG X,DONG Y,ZOU S,et al.A semi-supervised framework for computational fluid dynamics prediction[J].Applied Soft Computing,2024,154:111422. [25]WEISS K,KHOSHGOFTAAR T M,WANG D.A survey oftransfer learning[J].Journal of Big data,2016,3(1):1-40. [26]LAI W S,HUANG J B,YANG M H.Semi-supervised learning for optical flow with generative adversarial networks[C]//Advances in Neural Information Processing Systems.2017. [27]WANG X,JIANG Y,LI G,et al.Sag-flownet:self-attentiongenerative network for airfoil flow field prediction[J].Soft Computing,2024,28:7417-7437. [28]WANG X,ZOU S,JIANG Y,et al.Swin-FlowNet:Flow field oriented optimization aided by a CNN and Swin-Transformer based model[J].Journal of Computational Science,2023,72:102121. [29]WU H Z,LIU X J,AN W,et al.A generative deep learning framework for airfoil flow field prediction with sparse data[J].Chinese Journal of Aeronautics,2022,35(1):470-484. [30]REYNOLDS D A.Gaussian mixture models[M]//Encyclopedia of Biometrics.Boston,MA:Springer,2009:659-663. [31]YIN X,CHEN S,HU E.Regularized soft k-means for discriminant analysis[J].Neurocomputing,2013,103:29-42. [32]ROGERS D F.An introduction to NUBRBS:with historical perspective[M].Morgan Kaufmann,2001. [33]BLASINGAME T,JOHNSTON J,LEE W.Type-curve analysis using the pressure integral method[C]//SPE Western Regional Meeting.SPE,1989. [34]LOH W L.On latin hypercube sampling[J].The Annals of Statistics,1996,24(5):2058-2080. [35]LOSHCHILOV I,HUTTER F.Decoupled weight decay regularization[J].arXiv:1711.05101,2017. |
[1] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[2] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[3] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[4] | CHEN Qirui, WANG Baohui, DAI Chencheng. Research on Electrocardiogram Classification and Recognition Algorithm Based on Transfer Learning [J]. Computer Science, 2025, 52(6A): 240900073-8. |
[5] | RAN Qin, RUAN Xiaoli, XU Jing, LI Shaobo, HU Bingqi. Function Prediction of Therapeutic Peptides with Multi-coded Neural Networks Based on Projected Gradient Descent [J]. Computer Science, 2025, 52(6A): 240800024-6. |
[6] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
[7] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
[8] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
[9] | HAO Xu, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, WANG Jiamin, CHU Hongkun. Survey of Man-Machine Distance Detection Method in Construction Site [J]. Computer Science, 2025, 52(6A): 240700098-10. |
[10] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[11] | GAO Junyi, ZHANG Wei, LI Zelin. YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model [J]. Computer Science, 2025, 52(6A): 240800134-9. |
[12] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[13] | HUANG Hong, SU Han, MIN Peng. Small Target Detection Algorithm in UAV Images Integrating Multi-scale Features [J]. Computer Science, 2025, 52(6A): 240700097-5. |
[14] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[15] | LIU Chengming, LI Haixia, LI Shaochuan, LI Yinghao. Ensemble Learning Model for Stock Manipulation Detection Based on Multi-scale Data [J]. Computer Science, 2025, 52(6A): 240700108-8. |
|