计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 264-273.doi: 10.11896/jsjkx.241200197
张鑫艳1,2, 唐振超3,4, 李一夫5, 刘振宇1,2
ZHANG Xinyan1,2, TANG Zhenchao3,4, LI Yifu5, LIU Zhenyu1,2
摘要: 心房颤动(AF)是临床上最常见的心律失常之一。左心房及其心肌梗死后疤痕区域的准确分割和面积评估,对于心肌梗死患者出现AF的早期诊断、治疗规划以及预后评估具有极其重要的临床意义。深度学习方法是进行左心房及其心肌梗死后疤痕区域自动分割的主流方向。但是由于心肌梗死后疤痕体积小且容易受到周围增强组织的影响,分割精度尚有待提高。为此,提出了一种基于多尺度注意力和不确定性损失的两阶段深度学习模型。一方面,在网络上采样之前引入多尺度注意力模块(MSAM),该模块能够编码丰富的多尺度语义信息并让模型更为关注重要的语义信息及空间信息。另一方面,引入不确定性损失(Uncertainty Loss)以增强模型对疤痕不确定性的建模能力。此外,还采用直方图匹配(HM)增强图像质量,提高网络的分割能力。将所提出的方法在验证集以及左心房和疤痕量化与分割挑战赛(LAScarQS++)验证平台上进行验证,实验结果均表明该方法分割的疤痕更加完整,分割精度也得到了提升。与nnU-Net相比,心肌梗死后疤痕分割骰子系数(Dice)提高了8.12%。
中图分类号:
[1]SHI S,TANG Y,ZHAO Q,et al.Prevalence and risk of atrial fibrillation in China:A national cross-sectional epidemiological study [J].The Lancet regional health Western Pacific,2022,23:100439. [2]AMERICAN HEART ASSOCIATION.Living With AFibGuide[EB/OL].https://www.hear-t.org/en/health-topics/atrial-fibrillation. [3]KARIM R,HOUSDEN R J,BALASUBR-AMANIAM M,et al.Evaluation of current algorithms for segmentation of scar tissue from late Gadolinium enhancement cardiovascular magnetic resonance of the left atrium:an open-access grand challenge [J].Journal of Cardiovascular Magnetic Resonance,2013,15(1):105. [4]LEFEBVRE A L,YAMAMOTO C A P,SHADE J K,et al.LASSNet:A Four Steps Deep Neural Network for Left Atrial Segmentation and Scar Quantification [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation:First Challenge,LAScarQS 2022 Held in Conjunction with MICCAI 2022,Singapore,September 18,2022,Proceedings.2023:1-15. [5]LI L,WU F,YANG G,et al.Atrial scar quantification via multi-scale CNN in the graph-cuts framework [J].Medical Image Analysis,2020,60:101595. [6]LI L,ZIMMER V A,SCHNABEL J A,et al.AtrialJSQnet:a new framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information [J].Medical Image Analysis,2022,76:102303. [7]ZHOU S,WANG K,ZHOU G.Edge-Enhanced Feature Guided Joint Segmentation of Left Atrial and Scars in LGE MRI Images [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:93-105. [8]AREGA T W,BRICQ S,MERIAUDEAU F.Leveraging Uncertainty Estimates to Improve Segmentation Performance in Cardiac MR [C]//Proceedings of the Uncertainty for Safe Utilization of Machine Learning in Medical Imaging,and Perinatal Imaging,Placental and Preterm Image Analysis.2021:24-33. [9]MA J.Histogram Matching Augmentation for Domain Adaptation with Application to Multi-centre,Multi-vendor and Multi-disease Cardiac Image Segmentation [C]//Proceedings of the Statistical Atlases and Computational Models of the Heart M&Ms and EMIDEC Challenges.2021:177-186. [10]SU R,ZHANG D,LIU J,et al.MSU-Net:Multi-scale U-Net for 2D medical image segmentation [J].Frontiers inGenetics,2021,12:639930. [11]KHAN A,ALWAZZAN O,BENNING M,et al.Sequential Segmentation of the Left Atrium and Atrial Scars Using a Multi-scale Weight Sharing Network and Boundary-Based Processing [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:69-82. [12]LI F,LI W.Cross-Domain Segmentation of Left Atrium Basedon Multi-scale Decision Level Fusion [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:124-132. [13]ISENSEE F,JAEGER P F,KOHL S A A,et al.nnU-Net:a self-configuring method for deep learning-based biomedical image segmentation [J].Nature Methods,2021,18(2):203-211. [14]HU J,SHEN L,SUN G.Squeeze-and-Excitation Networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [15]WOO S,PARK J,LEE J,et al.Cbam:Convolutional block attention module [C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:3-19. [16]PARK J,WOO S,LEE J,et al.BAM:Bottleneck AttentionModule [C]//Proceedings of the British Machine Vision Confe-rence.2018. [17]NG M,GUO F,BISWAS L,et al.Estimating Uncertainty inNeural Networks for Cardiac MRI Segmentation:A Benchmark Study [J].IEEE Transactions on Biomedical Engineering,2023,70(6):1955-1966. [18]SANDER J,VOS B D,WOLTERINK J M,et al.Towards increased trustworthiness of deep learning segmentation methods on cardiac MRI [C]//Proceedings of the Medical imaging 2019:image Processing.2019:324-330. [19]YANG X,WANG N,WANG Y,et al.Combating Uncertainty with Novel Losses for Automatic Left Atrium Segmentation [C]//Proceedings of the Statistical Atlases and Computational Models of the Heart Atrial Segmentation and LV Quantification Challenges.2019:246-254. [20]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation [C]//Proceedings of the Proceedings of the European Conference on Computer Vision (ECCV).2018:801-818. [21]OGBOMO-HARMITT S,GRZELAK J,QURESHI A,et al.TESSLA:Two-Stage Ensemble Scar Segmentation for the Left Atrium [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:106-114. [22]BEINART R,ABBARA S,BLUM A,et al.Left atrial wallthickness variability measured by CT scans in patients undergoing pulmonary vein isolation [J].Journal of Cardiovascular Electrophysiology,2011,22(11):1232-1236. [23]ZHANG X,YANG X,HUANG L,et al.Two Stage of Histogram Matching Augmentation for Domain Generalization:Application to Left Atrial Segmentation [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:60-68. [24]SHAPIRA D,AVIDAN S,HEL-OR Y.Multiple histogrammatching [C]//Proceedings of the 2013 IEEE International Conference on Image Processing.2013:2269-2273. [25]LI L,ZIMMER V A,SCHNABEL J A,et al.Medical imageanalysis on left atrial LGE MRI for atrial fibrillation studies:A review [J].MedicalImage Analysis,2022,77:102360. [26]LI L,ZIMMER V A,SCHNABEL J A,et al.AtrialGeneral:domain generalization for left atrial segmentation of multi-center LGE MRIs [C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention(MICCAI 2021).24th International Conference.2021:557-566. [27]YANIV Z,LOWEKAMP B C,JOHNSON H J,et al.SimpleITK image-analysis notebooks:a collaborative environment for education and reproducible research [J].Journal of Digital Imaging,2018,31(3):290-303. [28]LI L,ZIMMER V A,SCHNABEL J A,et al.Medical imageanalysis on left atrial LGE MRI for atrial fibrillation studies:A review [J].Medical Image Analysis,2022,77:102360. [29]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention u-net:Learning where to look for the pancreas [J].arXiv:1804.03999,2018. [30]DIAKOGIANNIS F I,WALDNER F,CACCETTA P,et al.ResUNet-a:A deep learning framework for semantic segmentation of remotely sensed data [J].ISPRS Journal of Photogrammetry Remote Sensing,2020,162:94-114. [31]WU M,DING W,YANG M,et al.Multi-depth boundary-aware left atrial scar segmentation network [C]//Proceedings of the Challenge on Left Atrial and Scar Quantification and Segmentation.2022:16-23. [32]WU J,JI W,FU H,et al.Medsegdiff-v2:Diffusion-based medical image segmentation with transformer [C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:6030-6038. [33]ZHANG Y,MENG Y,ZHENG Y.Automatically segment the left atrium and scars from LGE-MRIs using a boundary-focused nnU-Net [C]//Proceedings of the Challenge on Left Atrial and Scar Quantification and Segmentation.2022:49-59. [34]AREGA T W,BRICQ S,MERIAUDEAU F.Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:133-144. |
|