计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240400193-7.doi: 10.11896/jsjkx.240400193
黄志勇, 李弼程, 魏巍
HUANG Zhiyong, LI Bicheng, WEI Wei
摘要: 随着网络上越来越多的人发表自己的观点,带有情绪的贴文也逐渐增多,负面情绪的累积可能导致舆论失控,准确地识别贴文的情感极性能有效分析舆论现状。目前方面级的情感分析尚未有效融合语法信息以及语义信息,无法同时考虑语法结构的互补性和语义相关性。为此,提出了一个融合语法和语义的方面级情感分析模型(Aspect-level Sentiment AnalysisMo-dels Based on Syntax and Semantics,SS-GCN),包括语法分析模块、语义分析模块以及融合模块。首先将文本作为预训练BERT模型的输入,通过语法分析模块获得语法关联关系的特征表示,同时经由邻域增强机制的语义分析模块捕获语义的相关性的特征表示。最后把二者输入到融合模块,在仿射变换的作用下对语法信息和语义信息进行有效的交互和融合,实现方面级情感分析。
中图分类号:
[1]SONG W,WEN Z,XIAO Z,et al.Semantics perception and refinement network for aspect-based sentiment analysis[J].Knowledge-Based Systems,2021,214:106755. [2]CHENG L C,CHEN Y L,LIAOY Y.Aspect-based sentimentanalysis with component focusing multi-head co-attention networks[J].Neurocomputing,2022,489:9-17. [3]HUANG Y,PENG H,LIU Q,et al.Attention-enabled gatedspiking neural P model for aspect-level sentiment classification[J].Neural Networks,2023,157:437-443. [4]GU T,ZHAO H,HE Z,et al.Integrating external knowledgeinto aspect-based sentiment analysis using graph neural network[J].Knowledge-Based Systems,2023,259:110025. [5]PHAN M H,OGUNBONA P O.Modelling context and syntactical features for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:3211-3220. [6]ZHANG M,QIAN T.Convolution over hierarchical syntacticand lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:3540-3549. [7]XIAO L,HU X,CHEN Y,et al.Targeted sentiment classification based on attentional encoding and graph convolutional networks[J].Applied Sciences,2020,10(3):957. [8]LIU N,SHEN B.Aspect-based sentiment analysis with gated alternate neural network[J].Knowledge-Based Systems,2020,188:105010. [9]ZHAO M,YANG J,ZHANG J,et al.Aggregated graph convolutional networks for aspect-based sentiment classification[J].Information Sciences,2022,600:73-93. [10]LIANG S,WEI W,MAO X L,et al.BiSyn-GAT+:Bi-syntaxaware graph attention network for aspect-based sentiment analysis[J].arXiv:2204.03117,2022. [11]ZHANG C,LI Q,SONG D.Aspect-based sentiment classification with aspect-specific graph convolutional networks[J].ar-Xiv:1909.03477,2019. [12]SUN K,ZHANG R,MENSAH S,et al.Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).2019:5679-5688. [13]CHEN C,TENG Z,ZHANG Y.Inducing target-specific latentstructures for aspect sentiment classification[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:5596-5607. [14]LIANG B,YIN R,GUI L,et al.Jointly learning aspect-focused and inter-aspect relations with graph convolutional networks for aspect sentiment analysis[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:150-161. [15]WANG K,SHEN W,YANG Y,et al.Relational graph attention network for aspect-based sentiment analysis[J].arXiv:2004.12362,2020. [16]LI R,CHEN H,FENG F,et al.Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:6319-6329. [17]MA Y,PENG H,CAMBRIA E.Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM[C]//Proceedings of the AAAI conference on artificial intelligence.2018,32(1). [18]ZHOU J,HUANG J X,HUQ V,et al.Sk-gcn:Modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification[J].Knowledge-Based Systems,2020,205:106292. [19]ZHONG Q,DING L,LIU J,et al.Knowledge graph augmented network towards multiview representation learning for aspect-based sentiment analysis[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(10):10098-10111. [20]WANG Y,HUANG M,ZHU X,et al.Attention-based LSTMfor aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:606-615. [21]TANG D,QIN B,LIU T.Aspect level sentiment classificationwith deep memory network[J].arXiv:1605.08900,2016. [22]MA D,LI S,ZHANG X,et al.Interactive attention networks for aspect-level sentiment classification[J].arXiv:1709.00893,2017. [23]HUANG B,OU Y,CARLEY K M.Aspect level sentiment classification with attention-over-attention neural networks[C]//11th International Conference Social,Cultural,and Behavioral Modeling(SBP-BRiMS 2018).Washington,DC,USA,Springer International Publishing,2018:197-206. [24]FAN F,FENG Y,ZHAO D.Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 cCnference on Empirical Methods in Natural Language Processing.2018:3433-3442. [25]ZHANG M,QIAN T.Convolution over hierarchical syntacticand lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:3540-3549. [26]LU Q,ZHU Z,ZHANG G,et al.Aspect-gated graph convolutional networks for aspect-based sentiment analysis[J].Applied Intelligence,2021,51(7):4408-4419. [27]ZHANG F,ZHANG Y,HOU S,et al.Aspect Fusion Graph Convolutional Networks for Aspect-Based Sentiment Analysis[C]//27th China Conference Information Retrieval(CCIR 2021).Dalian,China,Springer International Publishing,2021:74-87. [28]XIA Y,WU W N,YANG C C.Graph Convolutional Network-Based Multi-Interaction Attention Aspect-Level Sentiment Analysis[J].Computer Engineering and Design,2023,44(12):3691-3699. |
|