计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240400193-7.doi: 10.11896/jsjkx.240400193

• 人工智能 • 上一篇    下一篇

融合语法和语义信息的方面级情感分析模型

黄志勇, 李弼程, 魏巍   

  1. 华侨大学计算机科学与技术学院 福建 厦门 361000
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 李弼程(lbclm@163.com)
  • 作者简介:(22014083021@stu.hqu.edu.cn)
  • 基金资助:
    装备预研教育部联合基金(8091B022150)

Aspect-level Sentiment Analysis Models Based on Syntax and Semantics

HUANG Zhiyong, LI Bicheng, WEI Wei   

  1. College of Computer Science and Technology,Huaqiao University,Xiamen,Fujian 361000,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:HUANG Zhiyong,born in 1994,postgraduate.His main research interests include natural language processing,emotional analysis and topic detection.
    LI Bicheng,born in 1970,Ph.D,professor,Ph.D supervisor.His main research interests include intelligent information processing,network ideological security,network public opinion monitoring and guidance,and big data analysis and mining.
  • Supported by:
    Joint Fund of Ministry of Education for Equipment Pre-research(8091B022150).

摘要: 随着网络上越来越多的人发表自己的观点,带有情绪的贴文也逐渐增多,负面情绪的累积可能导致舆论失控,准确地识别贴文的情感极性能有效分析舆论现状。目前方面级的情感分析尚未有效融合语法信息以及语义信息,无法同时考虑语法结构的互补性和语义相关性。为此,提出了一个融合语法和语义的方面级情感分析模型(Aspect-level Sentiment AnalysisMo-dels Based on Syntax and Semantics,SS-GCN),包括语法分析模块、语义分析模块以及融合模块。首先将文本作为预训练BERT模型的输入,通过语法分析模块获得语法关联关系的特征表示,同时经由邻域增强机制的语义分析模块捕获语义的相关性的特征表示。最后把二者输入到融合模块,在仿射变换的作用下对语法信息和语义信息进行有效的交互和融合,实现方面级情感分析。

关键词: 情感分析, 情感分类, 细粒度, 语义, 语法, 融合

Abstract: As more and more people express their opinions online,the prevalence of emotionally charged posts is gradually increasing.The accumulation of negative emotions may lead to the loss of control over public opinion.Accurately identifying the emotional polarity of posts can effectively analyze the current state of public opinion.Current aspect-level sentiment analysis has not effectively integrated syntactic and semantic information,failing to simultaneously consider the complementarity of grammatical structures and semantic relevance.Therefore,a model for aspect-level sentiment analysis that integrates syntax and semantics(SS-GCN) is proposed,comprising syntax analysis module,semantics analysis module,and fusion module.Firstly,the text is input to a pre-trained BERT model to obtain feature representations of syntactic relationships through the syntax analysis module.Simultaneously,the semantics analysis module,enhanced by a neighborhood enhancement mechanism,captures feature representations of semantic relevance.Finally,both representations are input to the fusion module,where under the action of affine transformation,syntactic and semantic information are effectively interacted and integrated,achieving aspect-level sentiment analysis.

Key words: Sentiment analysis, Sentiment classification, Fine-grained, Semantic, Syntax, Fusion

中图分类号: 

  • TP391
[1]SONG W,WEN Z,XIAO Z,et al.Semantics perception and refinement network for aspect-based sentiment analysis[J].Knowledge-Based Systems,2021,214:106755.
[2]CHENG L C,CHEN Y L,LIAOY Y.Aspect-based sentimentanalysis with component focusing multi-head co-attention networks[J].Neurocomputing,2022,489:9-17.
[3]HUANG Y,PENG H,LIU Q,et al.Attention-enabled gatedspiking neural P model for aspect-level sentiment classification[J].Neural Networks,2023,157:437-443.
[4]GU T,ZHAO H,HE Z,et al.Integrating external knowledgeinto aspect-based sentiment analysis using graph neural network[J].Knowledge-Based Systems,2023,259:110025.
[5]PHAN M H,OGUNBONA P O.Modelling context and syntactical features for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:3211-3220.
[6]ZHANG M,QIAN T.Convolution over hierarchical syntacticand lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:3540-3549.
[7]XIAO L,HU X,CHEN Y,et al.Targeted sentiment classification based on attentional encoding and graph convolutional networks[J].Applied Sciences,2020,10(3):957.
[8]LIU N,SHEN B.Aspect-based sentiment analysis with gated alternate neural network[J].Knowledge-Based Systems,2020,188:105010.
[9]ZHAO M,YANG J,ZHANG J,et al.Aggregated graph convolutional networks for aspect-based sentiment classification[J].Information Sciences,2022,600:73-93.
[10]LIANG S,WEI W,MAO X L,et al.BiSyn-GAT+:Bi-syntaxaware graph attention network for aspect-based sentiment analysis[J].arXiv:2204.03117,2022.
[11]ZHANG C,LI Q,SONG D.Aspect-based sentiment classification with aspect-specific graph convolutional networks[J].ar-Xiv:1909.03477,2019.
[12]SUN K,ZHANG R,MENSAH S,et al.Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).2019:5679-5688.
[13]CHEN C,TENG Z,ZHANG Y.Inducing target-specific latentstructures for aspect sentiment classification[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:5596-5607.
[14]LIANG B,YIN R,GUI L,et al.Jointly learning aspect-focused and inter-aspect relations with graph convolutional networks for aspect sentiment analysis[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:150-161.
[15]WANG K,SHEN W,YANG Y,et al.Relational graph attention network for aspect-based sentiment analysis[J].arXiv:2004.12362,2020.
[16]LI R,CHEN H,FENG F,et al.Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:6319-6329.
[17]MA Y,PENG H,CAMBRIA E.Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM[C]//Proceedings of the AAAI conference on artificial intelligence.2018,32(1).
[18]ZHOU J,HUANG J X,HUQ V,et al.Sk-gcn:Modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification[J].Knowledge-Based Systems,2020,205:106292.
[19]ZHONG Q,DING L,LIU J,et al.Knowledge graph augmented network towards multiview representation learning for aspect-based sentiment analysis[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(10):10098-10111.
[20]WANG Y,HUANG M,ZHU X,et al.Attention-based LSTMfor aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:606-615.
[21]TANG D,QIN B,LIU T.Aspect level sentiment classificationwith deep memory network[J].arXiv:1605.08900,2016.
[22]MA D,LI S,ZHANG X,et al.Interactive attention networks for aspect-level sentiment classification[J].arXiv:1709.00893,2017.
[23]HUANG B,OU Y,CARLEY K M.Aspect level sentiment classification with attention-over-attention neural networks[C]//11th International Conference Social,Cultural,and Behavioral Modeling(SBP-BRiMS 2018).Washington,DC,USA,Springer International Publishing,2018:197-206.
[24]FAN F,FENG Y,ZHAO D.Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 cCnference on Empirical Methods in Natural Language Processing.2018:3433-3442.
[25]ZHANG M,QIAN T.Convolution over hierarchical syntacticand lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:3540-3549.
[26]LU Q,ZHU Z,ZHANG G,et al.Aspect-gated graph convolutional networks for aspect-based sentiment analysis[J].Applied Intelligence,2021,51(7):4408-4419.
[27]ZHANG F,ZHANG Y,HOU S,et al.Aspect Fusion Graph Convolutional Networks for Aspect-Based Sentiment Analysis[C]//27th China Conference Information Retrieval(CCIR 2021).Dalian,China,Springer International Publishing,2021:74-87.
[28]XIA Y,WU W N,YANG C C.Graph Convolutional Network-Based Multi-Interaction Attention Aspect-Level Sentiment Analysis[J].Computer Engineering and Design,2023,44(12):3691-3699.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!