计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600121-8.doi: 10.11896/jsjkx.240600121

• 人工智能 • 上一篇    下一篇

基于MacBERT的融合依存句法信息和多视角词汇信息的中文命名实体识别方法

李代成, 李晗, 刘哲宇, 龚诗恒   

  1. 辽宁工业大学电子与信息工程学院 辽宁 锦州 121000
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 李晗(lih_neu@163.com)
  • 作者简介:(482889339@qq.com)
  • 基金资助:
    2024年辽宁省教育厅高等学校基本科研项目;辽宁省“揭榜挂帅”科技计划(重大)项目(2022JH1/10400009);辽宁工业大学教学改革研究项目(xjg2022033);辽宁省民生科技计划(2021JH2/10200002)

MacBERT Based Chinese Named Entity Recognition Fusion with Dependent Syntactic Information and Multi-view Lexical Information

LI Daicheng, LI Han, LIU Zheyu, GONG Shiheng   

  1. School of Electronic and Information Engineering,Liaoning University of Technology,Jinzhou,Liaoning 121000,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:LI Daicheng,born in 1999,postgraduate.His main research interests include natural language processing and know-ledge graphs.
    LI Han,born in 1984,Ph.D,associate professor.His main research interests include complex networks and embedded systems.
  • Supported by:
    2024 Fundamental Research Project of the Educational Department of Liaoning Province,Liaoning Province “Ranking” Project(2022JH1/10400009),Teaching Reform Research Project of Liaoning University of Technology(xjg2022033) and Liaoning Province Livelihood Science and Technology Plan(2021JH2/10200002).

摘要: 在实体类型开放和实体结构复杂的中文环境下,中文命名实体识别任务存在明显的实体边界判断错误和实体分类准确率低等问题。为了进一步改善上述问题,提出了一种以字符作为编码单位,并基于MacBERT预训练模型的中文命名实体识别模型——MacBERT-SDI-ML。首先,为了提取更丰富的中文语义特征,提高实体识别的准确性,模型采用MacBERT作为嵌入层。其次,为了进一步增强实体表示的特征,提高实体分类的准确性,模型通过一个依存句法信息解析器(SDIP)对实体更丰富的依存信息进行更高效的提取,并将其融合到字符表示中。此外,考虑到字符在不同的词汇中可能处在不同的位置,模型设计了一种基于自注意力机制的面向多视角的词汇信息融合组件(MLIF),来进一步增强字符表示的边界特征,有助于提高对边界判断的能力。最后,分别在Weibo,OntoNotes和Resume数据集上对模型进行训练。实验表明,MacBERT-SDI-ML模型在3个数据集上的F1值分别达到72.97%,86.56%和98.45%。

关键词: 中文命名实体识别, MacBERT, 词汇信息, 依存信息, 预训练模型, 自注意力机制

Abstract: In the Chinese environment of open entity types and complex entity structure,the Chinese named entity recognition(CNE) task encounter obvious issues,such as entity boundary judgment errors and low accuracy of entity classification.In order to solve above issues,a Chinese named entity recognition model called MacBERT-SDI-ML has been proposed,which based on the MacBERT pre-training model using characters as encoding units.Firstly,in order to extract richer Chinese semantic features and improve the accuracy of entity recognition,the model adopts MacBERT(the whole word masking for chinese BERT) as the embedding layer.Secondly,in order to further enhance entity representation characteristics and improve the accuracy of entity classification,the model utilizes a dependency syntactic information parser(SDIP) to efficiently extract more abundant dependency information of entities and integrate it into character representation.Additionally,considering the potential variation in character positions across different words,the model incorporates a multi-view lexical information fusion component(MLIF) based on self-attention mechanism to further enhance the boundary features of character representation and improve the accuracy of boundary judgment.Finally,experiment is conducted on the Weibo,OntoNotes and resume datasets,and the results show that the F1 value of the proposed model reaches 72.97%,86.56% and 98.45%,respectively.

Key words: CNER, MacBERT, Lexical information, Dependency information, Pre-training model, Self-attention mechanism

中图分类号: 

  • TP391
[1]DING J P,LI W J,LIU X Y,et al.Review on named entity re-cognition [J].Computer Engineering and Science,2024,46(7):1296-1310.
[2]LE P,TITOV I.Improving Entity Linking by Modeling LatentRelations between Mentions[C]//Proceedings of the 56th Annual Meeting on Association for Computational Linguistics.2018:1595-1604.
[3]HOU F,WANG R,HE J,et al.Improving Entity Linkingthrough Semantic Reinforced Entity Embeddings[C]//Procee-dings of the 58th Annual Meeting on Association for Computational Linguistics.2020:6843-6848.
[4]GU Y,QU X,WANG Z,et al.Read,Retrospect,Select:AnMRC Framework to Short Text Entity Linking[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2021:12920-12928.
[5]JI S X,PAN S R,ERIK C,et al.A Survey on KnowledgeGraphs:Representation,Acquisition,and Applications[J].ar-Xiv:2002.00388V4,2020.
[6]CHAWLA A,MULAY N,BISHNOI V,et al.KARL-Trans-NER:Knowledge Aware Representation Learning for Named Entity Recognition using Transformers[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:15436-15445.
[7]LIU A T,XIAO W,ZHU H,et al.QaNER:Prompting question answering models for few-shot named entity recognition[J].arXiv:2203.01543,2022.
[8]CUI Y,CHE W,LIU T,et al.Pre-training with whole wordmasking for chinese bert[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2021,29:3504-3514.
[9]GAO G Z,LI N,HUA Y P,et al.Named entity recognition in oiland gas field based on BERT-BiLSTM-CRF model [J].Journal of Yangtze University(Natural Science Edition),2024,21(1):57-65.
[10]JIANG C,WANG D B.Research on Entity Knowledge Automatic Extraction of public health emergency major infectious disease events based on BERT [J].Scientific and Technological Information Research,2021,3(2):23-35.
[11] WU S,YANG X Z,HE L,et al.Research on entity recognition of fine-grained ancient books based on syntactic features and Bert-BiLSTM-MHA-CRF[J/OL].[2024-05-22].http://kns.cnki.net/kcms/detail/10.1478.G2.20240313.1314.004.html.
[12]LAN Z Z,CHEN M D,GOODMAN S,et al.ALBERT:A Lite BERT for Self-supervised Learning of Language Representations[C]//CoRR.2019.
[13] CLARK K,LUONG M T,LE Q V,et al.Electra:Pre-training text encoders as discriminators rather than generators[C]//ICLR.2020.
[14] LIU Y H,MYLE O,NAMAN G,et al.Roberta:A robustly optimized bert pretraining approach[C]//CoRR.2019.
[15] LU X T,SUN L P,LING C,et al.Chinese electronic medical record named entity recognition with Pinyin and parts-of-speech features [J/OL].2024-05-24].http://kns.cnki.net/kcms/detail/21.1106.TP.20240228.1116.013.html.
[16]HE J,WANG H.Chinese named entity recognition and wordsegmentation based on character[C]//Proceedings of the Sixth SIGHAN Workshop on Chinese Language Processing.2008.
[17]LI Y,LUE S G D,JIANG W L.Chinese named entity recognition with External knowledge and location information [J/OL].[2024-05-24].http://kns.cnki.net/kcms/detail/11.2127.TP.20240129.1202.022.html.
[18]LIU J,SUN M,ZHANG W,et al.DAE-NER:Dual-channel Attention Enhancement for Chinese Named Entity Recognition[J].Computer Speech & Language,2024,85(Apr.):101581.
[19]WU S,SONG X N,FENG Z.MECT:Multi-metadata embedding based cross-transformer for Chinese named entity recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2021:1529-1539.
[20]ZHU P,CHENG D,YANG F,et al.Improving Chinese named entity recognition by large-scale syntactic dependency graph[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2022,30:979-991.
[21]YANG D,LIAN T,ZHENG W,et al.Enriching Word Information Representation for Chinese Cybersecurity Named Entity Recognition[J].Neural Processing Letters,2023,55(6):7689-7707.
[22]WANG P,WANG Z,ZHANG X,et al.Enhanced Named Entity Recognition through Joint Dependency Parsing[C]//2023 International Joint Conference on Neural Networks(IJCNN).IEEE,2023:1-8.
[23]ZHANG Y,YANG J.Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:1554-1564.
[24]ZHAO Z Y,ZHU J J,ZHANG Y X,et al.Chinese named entity recognition enhanced by dictionary knowledge integration based on Chinese context information [J/OL].[2024-05-26].https://doi.org/10.19907/j.0490-6756.2024.042001.
[25]CHEN Y Q,WU X L,ZHAN W T,et al.Chinese named entity recognition based on multi-feature fusion and attention mechanism [J/OL].[2024-05-26].http://kns.cnki.net/kcms/detail/21.1106.TP.20240226.1426.008.html.
[26]ZHANG H,WANG X,LIU J,et al.Chinese named entity recognition method for the finance domain based on enhanced features and pretrained language models[J].Information Sciences,2023,625:385-400.
[27]LIU J,LIU C,LI N,et al.LADA-trans-NER:adaptive efficient transformer for Chinese named entity recognition using lexicon-attention and data-augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:13236-13245.
[28]WU F,LIU J,WU C,et al.Neural Chinese named entity recognition via CNN-LSTM-CRF and joint training with word segmentation[C]//The World Wide Web Conference.2019:3342-3348.
[29]WEISCHEDEL R,PRADHAN S,RAMSHAW L,et al.On-tonotes release 4.0[Z].LDC2011T03,Philadelphia,Penn.:Linguistic Data Consortium,2011:17.
[30]PENG N,DREDZE M.Named entity recognition for chinese social media with jointly trained embeddings[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:548-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!