计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240400188-7.doi: 10.11896/jsjkx.240400188
王宝会1, 高瞻1, 徐林2, 谭英洁1
WANG Baohui1, GAO Zhan1, XU Lin2, TAN Yingjie1
摘要: 目前国内外构建瓦斯浓度传统预测算法主要是ARIMA模型和SVM模型。随着深度学习技术的快速发展以及神经网络的兴起,最新的瓦斯浓度预测通过循环神经网络模型进行预测。循环神经网络因为具有非线性特点,并且考虑到了数据间的联系,所以预测效果相比传统预测算法有了进一步提升。而当样本序列长度加长时,由于其模型固有缺陷,预测能力会降低。文中针对此问题提出了一种新型的瓦斯浓度预测模型。卷积神经网络结合循环神经网络的方式,并且加入注意力机制增加数据间的表达能力。通过使用山西汾西矿业集团中兴煤业1209工作面的实际数据进行测试,传统的循环神经网络模型预测的平均相对误差为0.042 1,所提模型预测的平均相对误差为0.029 3。实验表明提出的算法相比瓦斯浓度传统预测算法获得了更好的预测性能。
中图分类号:
[1]LI D F,ZHAO S,WU F.A research ofcoal and gas outburst prediction based on ICA-SVM[J].Industry and Mine Automation,2009,35(10):36-38. [2]LI D G,ZHAO S,YANG D P.A method of coal and gas outburst prediction based on KPCA-SVM[J].Industry and Mine Automation,2010,36(10):36-38. [3]HUANG W Y.Research on mine gas early warning technology based on support vector machine data fusion[D].China University of Mining and Technology,2009. [4]WU B,GUO Z G,WANG Z W.Prediction of Gas Emission in Mining Working Face Based on ARIMA-GM Model[J].Safty in Coal Mines,2015,46(11):152-155. [5]FAN J D,HUANG Y X,YAN Z G,et al.Research on Gas Concentration Prediction Driven by ARIMA-SVM Combined Model[J].Industrial and Mining Automation,2022,48(9):134-139. [6]QIAO M Y,MA X P,LAN J Y,et al.Short-term Gas Prediction Based on Weighted LS-SVM Time Series [J].Journal of Mining and Safety Engineering,2011,28(2):310-314. [7]JIANG L.Construction and Simulation of Coal Mine Gas Concentration Prediction Model Based on BP Neural Network [J].Mining Safety and Environmental Protection,2010(4):37-39. [8]JI Z G.Application of BP Neural Network Model Improved by Genetic Algorithm in Predicting Gas Emission from Adjacent Layers [J].Mine Safety,2011(7):36-38. [9]GAO L,HU Y J,YU H Z.Gas Time Series Prediction Method Based on W_RBF [J].Journal of China Coal Society,2008,33(1):67-70. [10]JIA P T,DENG J.Combined Prediction Model of Mine Gas Concentration Based on Generalized Average Operation [J].China Safety Science Journal,2012,22(6):41-46. [11]SHAZEER N,MIRHOSEINI A,MAZIARZ K,et al.Outra-geously large neural networks:The sparsely-gated mixture-of-experts layer[J].arXiv:1701.06538,2017. [12]LIU J Q.Research on Gas Data Time Series Prediction Based on Improved LSTM Recurrent Neural Network [D].China University of Mining and Technology,2019. [13]XUN X Y,SU C,LI W,et al.Prediction of Coal Mine Gas Concentration Based on CNN-LSTM [J].Modern Information Technology,2020,4(20):149-152. [14]QIN J X,GE S W,LONG F Q,et al.Prediction of Spatial-Temporal Distribution of Gas Concentration Based on GCN-GRU [J].Industrial and Mining Automation,2023,49(5):82-89,111. [15]ZHOU H,ZHANG S,PENG J,et al.Informer:Beyond Efficient Transformer for Long Sequence Time-Series Forecasting[J].arXiv:2012.07436,2020. [16]BRYAN L Ö,S A,NICOLAS L,et al.Temporal Fusion Transformers for interpretable multi-horizon time series forecasting[J].International Journal of Forecasting,2021,37(4):1748-1764. [17]HU X,WANG W,TANG J,et al.Time series forecasting ofNOx concentration based on Informer for MSWI[C]//35th Chinese Control and Decision Conference(CCDC 2023).2023:319-324. [18]OLEKSII K,BORIS G.Factorization tricks for LSTM networks[J].arXiv:1703.10722,2017. [19]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [20]KIM Y,DENTON C,HOANG L,et al.Structured attentionnetworks[C]//International Conference on Learning Representations.2017. [21]LIN Z,FENG M W,NOGUEIRA D S C,et al.A structured self-attentive sentence embedding[J].arXiv:1703.03130,2017. [22]GEHRING J,AULI M,GRANGIER D,et al.Dauphin.Convolutional sequence to sequence learning[J].arXiv:1705.03122v2,2017. [23]ZENG A L,CHEN M X,ZHANG L,et al.Are transformers effective for time series forecasting?[C]//AAAI.2023. |
|