计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600017-5.doi: 10.11896/jsjkx.240600017

• 大数据&数据科学 • 上一篇    下一篇

面向轨道交通的短时客流数据生成与预测方法研究

郜新军1, 张梅欣2, 朱力2   

  1. 1 中国铁道科学研究院集团有限公司通信信号研究所 北京 100081
    2 北京交通大学先进轨道交通自主运行全国重点实验室 北京 100044
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 郜新军(tkygxj@163.com)
  • 基金资助:
    :北京市自然科学基金(L221016)

Study on Short-time Passenger Flow Data Generation and Prediction Method for RailTransportation

GAO Xinjun1, ZHANG Meixin2, ZHU Li2   

  1. 1 Signal & Communication Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China
    2 National Key Laboratory of Autonomous Operation of Advanced Railway Transportation,Beijing Jiaotong University,Beijing 100044,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:GAO Xinjun,born in 1987,postgra-duate,associate research fellow.His main research interests include rail transit passenger flow forecasting,train operation control,artificial intelligence.
  • Supported by:
    Natural Science Foundation of Beijing,China(L221016).

摘要: 随着城市化进程的加快,地铁客流量的动态变化及不确定性带来的扰动会影响我国城市轨道交通运营服务质量。本研究面向轨道交通网络化运营提出一种基于生成对抗网络(GAN)的客流数据增强方法,通过利用少量的原始客流数据生成大量特征相同的可用数据,进行数据增强。在客流数据增强基础上,进一步研究基于时空多维的轨道交通运营态势精准预测方法,提出基于长短期记忆网络((LSTM))、卷积神经网络(CNN)和图神经网络(GCN)的客流数据预测方法,分别从时间维度和时空维度实现对轨道交通的客流量数据进行精准预测。短时客流数据的生成和预测能够为列车运行调整提供坚实基础,为提升轨道交通运营服务质量保驾护航,为未来城市发展规划提供理论支撑。

关键词: 城市轨道交通, 数据增强, 生成对抗网络, 客流预测, 神经网络

Abstract: With the acceleration of urbanization,the dynamic change of subway passenger flow and the perturbation caused by uncertainty will affect the quality of urban rail transit operation service in China.This study proposes a passenger flow data enhancement method based on generative adversarial network for networked rail transit operation,which generates a large amount of usable data with the same characteristics by using a small amount of original passenger flow data for data enhancement.On the basis of passenger flow data enhancement,we further study the accurate prediction method of rail transit operation posture based on spatio-temporal multidimensionality,and propose a passenger flow data prediction method based on long-short-term memory network,convolutional neural network,and graphical neural network,which can realize the accurate prediction of the passenger flow data of the rail transit in the temporal dimension and spatio-temporal dimension,respectively.The generation and prediction of short-time passenger flow data can effectively alleviate the pressure of passenger flow.Additionally,accurate passenger flow prediction provides a solid foundation for adjusting train operations,improves the quality of rail transit services,and offers theoretical support for future urban development planning.

Key words: Urban rail transit, Data augmentation, Generative adversarial networks, Passenger flow prediction, Neural networks

中图分类号: 

  • TP181
[1]NI J,YU L,JIN X N.Forecast and research of urban rail transit passenger flow based on ARIMA model[J].Intelligent Compu-ter and Applications,2021,11(4):135-138.
[2]CHENG H,XU X.Short-term passenger flow prediction of rail transit based on BP neural network[J].Electronic Techno-logy & Software Engineering,2021(22):163-164.
[3]ZONG J Z.Research on Urban Rail Transit Passenger Flow Forecasting Based on BP Neural Network[J].Western China Communications Science & Technology,2021(9):163-164.
[4]LIU D,WU Z,SUN S.Study on Subway passenger flow prediction based on deep recurrent neural network[J].Multimed Tools Sppl,2022,81(14):18979-18992.
[5]HUANG J,SHAO F,YANG S.Passenger Flow Prediction based on Recurrent Neural Networks and Wavelet Transform[J].Journal of physics.Conference series,2020,1486(2):22021.
[6]ZHANG Y W,CHEN R F,LIU X Y.Passenger flow prediction of passenger stations based on gated recurrent neural network[J].Railway Transport and Economy,2022,44(9):96-102.
[7]SHEN C,ZHU L,HUA G,et al.A Deep Convolutional Neural Network Based Metro Passenger Flow Forecasting System Using a Fusion of Time and Space[J].2020 IEEE 23RD International Conference on Intelligent Transportation Systems(ITSC),2020.
[8]LI Y,WU C,YOSHINAGA T,et al.Traffic Flow Prediction with Compact Neural Networks[C]//IEEE 17th Int. Conf. on Dependable,Autonom and Secure Comp/IEEE 17th Int. conf. on pervas intelligence and Comp/IEEE 5th Int. Conf. on Cloud and Big Data Comp/IEEE 4th Cyber Science and Technology Congress(dasc/picom/cbdcom/cyberscitech).2019:1072-1076.
[9]ZHANG J,CHEN F,GUOY,et al.Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit[J].IET Intell. Transp. SY,2020,14(10):1210-1217.
[10]DROSOULI I,VOULODIMOS A,MASTOROCOSTAS P,et al.A Spatial-Temporal Graph Convolutional Recurrent Network for Transportation Flow Estimation[J].SENSORS-BASEL,2023,23(17):7534.
[11]TRONG T N,MEHTONEN J,GONZÁLEZ G,et al.Semisu-pervised generative autoencoder for single-cell data[J].Journal of Computational Biology,2020,27(8):1190-1203.
[12]ZHANG X,YANG Y,YUAN S,et al.Syntax-infused variational autoencoder for text generation[J].arXiv:1906.02181,2019.
[13]BENGIO Y,YAO L,ALAIN G,et al.Generalized denoising auto-encoders as generative models[J].arXiv:1305.6663,2013.
[14]VAN OORD A,KALCHBRENNER N,KAVUKCUOGLU K.Pixel recurrent neural networks[C]//International Conference on Machine Learning.PMLR,2016:1747-1756.
[15]VAN DEN OORD A,KALCHBRENNER N,ESPEHOLT L,et al.Conditional image generation with pixelcnn decoders[J].arXiv:1606.05328,2016.
[16]GOODFELLOW I,POUGET-ABADIE J,MIRZAM,et al.Ge-nerative adversarial nets[J].arXiv:1406.2661,2014.
[17]DENG B,RAN Z,CHEN J,et al.Adversarial Examples Generation Algorithm through DCGAN[J].Intelligent Automation and Soft Computing,2021,30(3):889-898.
[18]ADLER J,LUNZ S.Banach wasserstein gan[J].arXiv:1806.06621,2018.
[19]HAIDERBHAI M,LEDESMA S,NAVABN,et al.Generating X-ray Images from Point Clouds Using Conditional Generative Adversarial Networks[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC).IEEE,2020:1588-1591.
[20]TODA R,TERAMOTO A,TSUJIMOTOM,et al.Synthetic CT image generation of shape-controlled lung cancer using semi-conditional InfoGAN and its applicability for type classification[J].International Journal of Computer Assisted Radiology and Surgery,2021,16(2):241-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!