计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600065-7.doi: 10.11896/jsjkx.240600065

• 网络&通信 • 上一篇    下一篇

端云人脸识别系统计算卸载策略设计

冀乃庚, 王伟鹏, 窦逸辛   

  1. 中国银联 上海 201201
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 冀乃庚(ngji@unionpay.com)

Design of Computation Offloading Strategy for Device-Cloud Face Recognition System

JI Naigeng, WANG Weipeng, DOU Yixin   

  1. China Unionpay,Shanghai 201201,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:JI Naigeng,born in 1975,bachelor,se-nior engineer.His main research in-terests include computer applications and network engineering.

摘要: 针对端云协同体系下的人脸识别系统,提出了一种结合实际业务的计算卸载策略,旨在实现资源固定的条件下最大化识别准确率。首先,提出一种双向精度提升的端云识别模型集成方法,该方法不同于传统从宽或从严集成,能同步提升TAR和TRR两个精度指标以保障端云协同识别精度全面高于端侧;其次,提出基于组合识别结果的特征选型方案,利用识别结果与正负样本占比之间的统计关系划分识别风险等级,提取出高风险场景特征组合;此外,提出一种资源全局调控的优化方案,通过统计分布差异选定异常园区及终端,对其倾斜算法资源以提升全局识别精度;最后,提出使用OC-SVM分类器,适应正负样本数量不对等、分布集中但存在长尾离群点的场景,并实现召回占比动态调整。实验结果表明,本方案提出的优化设计能够在算法资源不变的条件下显著提升算法精度,具有较高的实用价值和推广应用潜力。

关键词: 人脸识别, 计算卸载, 模型集成

Abstract: This paper addresses the challenges in face recognition system under the device-cloud collaborative structure,presenting a computation offloading strategy tailored in real-world scenarios to optimize recognition accuracy within resource constraints.Firstly,a device-cloud identification model integration method is proposed,which is different from the strict or lenient integration method,enhancing both true acceptance rate(TAR) and true rejection rate(TRR) to ensure that the collaborative accuracy of device-cloud is higher than device.Secondly,we propose a feature selection scheme based on the combination identification results,categorizing recognition risk levels by utilizing the statistical relationship between the recognition results and the proportion of positive and negative samples,and extracting feature combinations of high-risk scenarios.In addition,an optimization scheme for global resource control is proposed,which selects abnormal parks and terminals through statistical distribution differences and allocates more algorithm resources to improve global recognition accuracy.Finally,we also propose to use OC-SVM to adapt to scenarios with unequal sample distributions and outliers,facilitating the dynamic adjustment of the recall proportion.Experimental results demonstrate that the optimized scheme proposed in this paper is efficient in improving algorithmic accuracy within resource constraints,and it shows practical value and potential for application.

Key words: Face recognition, Computation offloading, Model integration

中图分类号: 

  • TP391.41
[1]TAIGMAN Y,YANG M,RANZATO M,et al.DeepFace:Closing the Gap to Human-Level Performance in Face Verification[C]//IEEE Conference on Computer Vision & Pattern Recognition.IEEE Computer Society,2014.
[2]SUN Y,LIANG D,WANG X,et al.DeepID3:Face Recognition with Very Deep Neural Networks[J].arXiv:1502.00873,2015.
[3]SARASWAT S,SINGH S,MIDDHA P,et al.Revolutionizing Pandemic Healthcare:Mask Detection and Patient Face Recognition[C]//2024 14th International Conference on Cloud Computing,Data Science & Engineering.2004.
[4]WEI Q,LI Y J,LOU P,et al.Face Recognition Method Based on Edge-Cloud Collaboration[J].Computer Science,2022,49(5):71-77.
[5]JIAO L,FU X,FRIEDMAN R,et al.Cloud-based computation offloading for mobile devices:State of the art,challenges and opportunities[C]//Future Network & Mobile Summit.IEEE,2013.
[6]YU S,CHEN X,YANG L,et al.Intelligent Edge:Leveraging Deep Imitation Learning for Mobile Edge Computation Offloading[J].IEEE Wireless Communications,2022,27(1):92-99.
[7]SUN Z,CHEN G.Contract-Optimization Approach(COA):ANew Approach for Optimizing Service Caching,Computation Offloading,and Resource Allocation in Mobile Edge Computing Network[J].Sensors,2023,23(10):4806.
[8]WU H X,LIN Z J,CHEN P P,et al.Joint partial computation offloading and resource allocation in MEC-enable networks[J].The Journal of China Universities of Posts and Telecommunications,2023,30(1):80-86.
[9]LI Q,SHI Z,XU C Y.A many-objective evolutionary algorithm for solving computation offloading problems under uncertain communication conditions[J].Computer Communications,2024,213(Jan.):22-32.
[10]CHEN S,WANG Q,ZHU X.Energy and delay co-aware intelligent computation offloading and resource allocation for fog computing networks[J].Multimedia Tools and Applications,2024,83(19):56737-56762.
[11]HAZRA A,DONTA P K,DUSTDAR A S.Cooperative Transmission Scheduling and Computation Offloading With Collaboration of Fog and Cloud for Industrial IoT Applications[J].IEEE Internet of Things Journal,2023,10(5):3944-3953.
[12]FARAHBAKHSH F,SHAHIDINEJAD A,GHOBAEI-ARANI M.Context-aware computation offloading for mobile edge computing[J].Journal of Ambient Intelligence and Humanized Computing,2023,14(1):5123-5135.
[13]HAN D,LIU Y,NI J.Research on Multinode CollaborativeComputing Offloading Algorithm Based on Minimization of Energy Consumption[J].Wireless Communications and Mobile Computing,2020,2020:1-11.
[14]ZHANG C H,LI P X,WANG Q.Research on Network Financial Crime Early Warning System-Based on Blockchain and Edge Computing[J].Journal of Intelligence,2023,42(1):59-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!