计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600051-6.doi: 10.11896/jsjkx.240600051

• 信息安全 • 上一篇    下一篇

一种基于改进D-S证据的智慧水利网络安全态势评估方法

夏卓群1, 周子豪1, 邓斌2, 康琛3   

  1. 1 长沙理工大学计算机与通信工程学院 长沙 410000
    2 长沙理工大学水利与环境工程学院 长沙 410000
    3 湖南省水旱灾害防御事务中心网信技术部 长沙 410000
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 周子豪(1043082059@qq.com)
  • 作者简介:(xiazhuoqun@csust.edu.cn)
  • 基金资助:
    湖南省水利厅科技项目(XSKJ2023059-40)

Security Situation Assessment Method for Intelligent Water Resources Network Based on ImprovedD-S Evidence

XIA Zhuoqun1, ZHOU Zihao1, DENG Bin2, KANG Chen3   

  1. 1 School of Computer and Communication Engineering,Changsha University of Technology,Changsha 410000,China
    2 School of Hydraulic and Environmental Engineering,Changsha University of Technology,Changsha 410000,China
    3 Network Information Technology Department of Hunan Provincial Flood and Drought Disaster Prevention Center,Changsha 410000,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:XIA Zhuoqun,born in 1977,Ph.D,professor.His main research interest is network security.
    ZHOU Zihao,born in 1999,postgraduate.His main research interest is network security.
  • Supported by:
    Hunan Provincial Department of Water Resources Science and Technology Project(XSKJ2023059-40).

摘要: 智慧水利是国家关键信息基础设施的重要行业和领域。网络安全态势评估技术的研究,为智慧水利的数据保护和网络安全建设提供了有力支撑。针对智慧水利网络模型特点以及基于单一D-S证据理论的网络安全态势评估模型中存在着主观依赖性、证据冲突大的问题,提出了一种基于改进D-S证据理论的智慧水利态势评估方法。首先,面对海量水利数据,使用深度自编码器对数据进行特征学习和过滤降维处理。然后,将处理后的数据交由深度神经网络进行二分类和多分类计算,并将结果融合,得出基本概率分配函数值,其将作为D-S证据理论的输入。最后,通过D-S证据理论的融合规则得到最终的网络安全态势评估结果。实验结果表明,相较于传统态势评估模型,所提方法能够在提升客观性的情况下,保持较高的准确性。

关键词: 智慧水利, 网络安全态势感知, D-S证据理论, 深度自编码器, 深度神经网络

Abstract: Intelligent water conservancy is an important industry and field of national key information infrastructure.The research on network security situation assessment technology provides powerful support for data protection and network security construction of smart water conservancy.This paper proposes a smart water conservancy situation assessment method based on improved D-S evidence theory,in response to the characteristics of smart water conservancy network models and the problems of insufficient objectivity and large evidence conflicts in network security situation assessment models based on a single D-S evidence theory.Firstly,in the face of massive water conservancy data,deep autoencoders are used to learn features and filter and reduce dimensionality of the data.Then,the processed data is handed over to a deep neural network for binary and multi classification calculations,and the results are fused to obtain the basic probability allocation function value as input for D-S evidence theory.Finally,the fusion rule of D-S evidence theory is used to obtain the final network security situation assessment result.Experimental results show that,compared to traditional situational assessment models,our method can maintain high accuracy while improving objectivity.

Key words: Intelligent water conservancy, Network security situation awareness, D-S theory of evidence, Deep autoencoder, Deep neural networks

中图分类号: 

  • TN915.08
[1]WU K H,LI Y,CHEN F,et al.A method for describing industrial control system network attack using object Petrinet[J].IEEE Transactions on Electrical and Electronic Engineering,2016,11(2):216-227.
[2]ZHAO W B.Research on the Network Security Monitoring System of Smart Water Conservancy Internet of Things[J].Water Resources Informatization,2021(4):39-46.
[3]LI Y J,ZHANG J,YANG X,et al.Discovery of Water Conservancy Network Security Threats Based on Situation Awareness [C]//Proceedings of the 2020(Eighth) China Water Conservancy Informatization Technology Forum.2020:328-334.
[4]RIGELSFORD J.Pattern recognition:Concepts,methods andapplications[J].Assembly Automation,2002,22(4).
[5]DONG W,WANG G,YAN Q,et al.Design of Network Security Situation Awareness and Early Warning System Based on Big Data[C]//2023 International Conference on Networking,Informatics and Computing(ICNETIC).Palermo,Italy,2023:749-753.
[6]CHANG L W,LIU X J,QIAN Y H,et al.A Network Security Situation Awareness Model Based on Multi-source Fusion of Convolutional Neural Networks [J].Computer Science,2023,50(5):382-389.
[7]XIE L X,WANG Y C,YU J B.Network Security SituationAwareness Based on Neural Networks [J].Journal of Tsinghua University(Science and Technology),2013,53(12):1750-1760.
[8]DUTT V,AHN Y S,GONZALEZ C.Cyber situation aware-ness:modeling detection of cyber attacks with instance-based learning theory[J].Human Factors,2013,55(3):605-618.
[9]HU J,MA D,LIU C,et al.Network Security Situation Prediction Based on MR-SVM[J].IEEE Access,2019,7:130937-130945.
[10]ALMEIDA R B,COVALSKI V,MACHADOR,et al.A hierarchical architectural model for network security exploring situational awareness[C]//Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.2019:1365-1372.
[11]SI C,ZHANG H,WANG Y,et al.Network Security Situation Elements Fusion Method Based on Ontology[C]//2014 Seventh International Symposium on Computational Intelligence and Design.Hangzhou,China,2014:272-275.
[12]JIA K,WANG L H,LIU D.Preliminary Exploration on theConstruction of the Network Security Situation Awareness System for the Hydrology of the Yangtze River [J].Express Water Resources & Hydropower Information,2021,42(3):79-84.
[13]CAO Q.System Design and Application of the Intelligent Operation Center for Large-scale Water Diversion Projects [J].Water Resources Informatization,2022,6(1):65-70.
[14]KONG Z J.Research on the Method and Application of Network Security Situation Awareness Based on D-S Evidence Theory [D].Hohhot:Inner Mongolia University,2022.
[15]LUO Q Q.Research on Network Security Situation Awareness Based on D-S Theory [D].Nanjing:Nanjing University of Posts and Telecommunications,2021.
[16]YANG H Y,ZENG R Y.A Network Security Situation Assessment Method Based on Deep Learning [J].Journal of Xidian University,2021,48(1):183-190.
[17]GOH J,ADEPU S,JUNEJO K N,et al.A Dataset to Support Research in the Design of Secure Water Treatment Systems[C]//The 11th International Conference on Critical Information Infrastructures Security.Cham:Springer,2016.
[18]Secure Water Treatment(SWaT) Testbed[EB/OL].https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/#swat.
[19]国务院.《国家突发公共事件总体应急预案》(http://www.gov.cn/jrzg/2006-01/08/content_150878.htm),2006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!