计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600051-6.doi: 10.11896/jsjkx.240600051
夏卓群1, 周子豪1, 邓斌2, 康琛3
XIA Zhuoqun1, ZHOU Zihao1, DENG Bin2, KANG Chen3
摘要: 智慧水利是国家关键信息基础设施的重要行业和领域。网络安全态势评估技术的研究,为智慧水利的数据保护和网络安全建设提供了有力支撑。针对智慧水利网络模型特点以及基于单一D-S证据理论的网络安全态势评估模型中存在着主观依赖性、证据冲突大的问题,提出了一种基于改进D-S证据理论的智慧水利态势评估方法。首先,面对海量水利数据,使用深度自编码器对数据进行特征学习和过滤降维处理。然后,将处理后的数据交由深度神经网络进行二分类和多分类计算,并将结果融合,得出基本概率分配函数值,其将作为D-S证据理论的输入。最后,通过D-S证据理论的融合规则得到最终的网络安全态势评估结果。实验结果表明,相较于传统态势评估模型,所提方法能够在提升客观性的情况下,保持较高的准确性。
中图分类号:
[1]WU K H,LI Y,CHEN F,et al.A method for describing industrial control system network attack using object Petrinet[J].IEEE Transactions on Electrical and Electronic Engineering,2016,11(2):216-227. [2]ZHAO W B.Research on the Network Security Monitoring System of Smart Water Conservancy Internet of Things[J].Water Resources Informatization,2021(4):39-46. [3]LI Y J,ZHANG J,YANG X,et al.Discovery of Water Conservancy Network Security Threats Based on Situation Awareness [C]//Proceedings of the 2020(Eighth) China Water Conservancy Informatization Technology Forum.2020:328-334. [4]RIGELSFORD J.Pattern recognition:Concepts,methods andapplications[J].Assembly Automation,2002,22(4). [5]DONG W,WANG G,YAN Q,et al.Design of Network Security Situation Awareness and Early Warning System Based on Big Data[C]//2023 International Conference on Networking,Informatics and Computing(ICNETIC).Palermo,Italy,2023:749-753. [6]CHANG L W,LIU X J,QIAN Y H,et al.A Network Security Situation Awareness Model Based on Multi-source Fusion of Convolutional Neural Networks [J].Computer Science,2023,50(5):382-389. [7]XIE L X,WANG Y C,YU J B.Network Security SituationAwareness Based on Neural Networks [J].Journal of Tsinghua University(Science and Technology),2013,53(12):1750-1760. [8]DUTT V,AHN Y S,GONZALEZ C.Cyber situation aware-ness:modeling detection of cyber attacks with instance-based learning theory[J].Human Factors,2013,55(3):605-618. [9]HU J,MA D,LIU C,et al.Network Security Situation Prediction Based on MR-SVM[J].IEEE Access,2019,7:130937-130945. [10]ALMEIDA R B,COVALSKI V,MACHADOR,et al.A hierarchical architectural model for network security exploring situational awareness[C]//Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.2019:1365-1372. [11]SI C,ZHANG H,WANG Y,et al.Network Security Situation Elements Fusion Method Based on Ontology[C]//2014 Seventh International Symposium on Computational Intelligence and Design.Hangzhou,China,2014:272-275. [12]JIA K,WANG L H,LIU D.Preliminary Exploration on theConstruction of the Network Security Situation Awareness System for the Hydrology of the Yangtze River [J].Express Water Resources & Hydropower Information,2021,42(3):79-84. [13]CAO Q.System Design and Application of the Intelligent Operation Center for Large-scale Water Diversion Projects [J].Water Resources Informatization,2022,6(1):65-70. [14]KONG Z J.Research on the Method and Application of Network Security Situation Awareness Based on D-S Evidence Theory [D].Hohhot:Inner Mongolia University,2022. [15]LUO Q Q.Research on Network Security Situation Awareness Based on D-S Theory [D].Nanjing:Nanjing University of Posts and Telecommunications,2021. [16]YANG H Y,ZENG R Y.A Network Security Situation Assessment Method Based on Deep Learning [J].Journal of Xidian University,2021,48(1):183-190. [17]GOH J,ADEPU S,JUNEJO K N,et al.A Dataset to Support Research in the Design of Secure Water Treatment Systems[C]//The 11th International Conference on Critical Information Infrastructures Security.Cham:Springer,2016. [18]Secure Water Treatment(SWaT) Testbed[EB/OL].https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/#swat. [19]国务院.《国家突发公共事件总体应急预案》(http://www.gov.cn/jrzg/2006-01/08/content_150878.htm),2006. |
|