计算机科学 ›› 2024, Vol. 51 ›› Issue (9): 155-161.doi: 10.11896/jsjkx.230900109
朱富坤1, 滕臻2, 邵文泽1, 葛琦1, 孙玉宝3
ZHU Fukun1, TENG Zhen2, SHAO Wenze1, GE Qi1, SUN Yubao3
摘要: 近年来,由于人工智能在各领域的普及,研究神经网络的可解释方法及理解神经网络的运作机理已经成为一个愈发重要的话题。作为神经网络解释性方法的一个分支,网络的路径可解释性受到了越来越多的关注。文中特别探讨了关键数据路由路径(Critical Data Routing Path,CDRP)这一面向网络路径的可解释方法。首先,通过Score-CAM(Score-Class Activation Map)方法分析了CDRP在输入域上的路径可视化归因,指出CDRP方法在语义层面的潜在缺陷。然后,提出了一种语义引导的Score-CDRP方法,从方法机理上提升了CDRP与原始神经网络的语义一致性。最后,通过实验从路径热力图可视化以及相应的预测与定位精度等角度验证了Score-CDRP方法相较于CDRP的合理性、有效性和鲁棒性。
中图分类号:
[1]SUBAKAN C,RAVANELLI M,CORNELL S,et al.Attention is all you need in speech separation[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing.(ICASSP 2021)IEEE,2021:21-25. [2]ZHU X,LYU S,WANG X,et al.TPH-YOLOv5:ImprovedYOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:2778-2788. [3]RICCARDO G,ANNA M,SALVATORE R,et al.A Survey Of Methods For Explaining Black Box Models[J].ACM Computing Surveys,2018,51(5):1-42. [4]YOSINSKI J,CLUNE J,NGUYEN A,et al.Understandingneural networks through deep visualization[J].arXiv:1506.06579,2015. [5]ERHAN D,BENGIO Y,COURVILLE A,et al.Visualizinghigher-layer features of a deep network[J].University of Montreal,2009,1341(3):1-13. [6]ZHOU B,KHOSLA A,LAPEDRIZA A,et al.Learning deepfeatures for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2921-2929. [7]BACH S,BINDER A,MONTAVON G,et al.On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J].PloS One,2015,10(7):e0130140. [8]SPRINGENBERG J T,DOSOVITSKIY A,BROX T,et al.Striving for simplicity:The all convolutional net[J].arXiv:1412.6806,2014. [9]WANG Y,SU H,ZHANG B,et al.Interpret neural networks byidentifying critical data routing paths[C]//proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8906-8914. [10]TIBSHIRANI R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society:Series B(Metho-dological),1996,58(1):267-288. [11]HOEFLER T,ALISTARH D,BEN-NUN T,et al.Sparsity in deep learning:Pruning and growth for efficient inference and training in neural networks[J].The Journal of Machine Lear-ning Research,2021,22(1):10882-11005. [12]HINTON G,VINYALS O,DEAN J.Distilling the Knowledgein a Neural Network[J].Computer Science,2015,14(7):38-39. [13]SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-cam:Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.2017:618-626. [14]CHATTOPADHAY A,SARKAR A,HOWLADER P,et al.Grad-cam++:Generalized gradient-based visual explanations for deep convolutional networks[C]//2018 IEEE Winter Conference on Applications of Computer Vision.IEEE,2018:839-847. [15]SATTARZADEH S,SUDHAKAR M,PLATANIOTIS K N,et al.Integrated grad-cam:Sensitivity-aware visual explanation of deep convolutional networks via integrated gradient-based scoring[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics,Speech and Signal Processing.IEEE,2021:1775-1779. [16]JIANG P,ZHANG C,HOU Q,et al.LayerCAM:Exploring Hi-erarchical Class Activation Maps for Localization.[J].IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society,2021,30:5875-5888. [17]WANG H,WANG Z,DU M,et al.Score-CAM:Score-weighted visual explanations for convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:24-25. [18]IBRAHIM R,SHAFIQ M O.Augmented Score-CAM:High reso-lution visual interpretations for deep neural networks[J].Knowledge-Based Systems,2022,252:109287. [19]KHAKZAR A,BASELIZADEH S,KHANDUJA S,et al.Neural response interpretation through the lens of critical pathways[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13528-13538. [20]ZHANG Y,TIÑO P,LEONARDIS A,et al.A survey on neural network interpretability[J].IEEE Transactions on Emerging Topics in Computational Intelligence,2021,5(5):726-742. [21]QIU Y,LENG J,GUO C,et al.Adversarial defense throughnetwork profiling based path extraction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4777-4786. [22]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J].arXiv:1409.1556,2014. [23]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115:211-252. [24]DESAI S,RAMASWAMY H G.Ablation-CAM:Visual Explanations for Deep Convolutional Network via Gradient-free Localization[C]//Workshop on Applications of Computer Vision.IEEE,2020:972-980. |
|