计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 103-109.doi: 10.11896/jsjkx.240600120

• 计算机软件 • 上一篇    下一篇

基于知识感知的图优化推荐模型

罗旭阳, 谭智一   

  1. 南京邮电大学通信与信息工程学院 南京 210003
  • 收稿日期:2024-06-20 修回日期:2024-12-03 发布日期:2025-07-17
  • 通讯作者: 谭智一(tzy@njupt.edu.cn)
  • 作者简介:(1021010616@njupt.edu.cn)
  • 基金资助:
    国家自然科学基金(62325206,61936005);江苏省重点研发计划(BE2023016-4);江苏省自然科学基金(BK20210595)

Knowledge-aware Graph Refinement Network for Recommendation

LUO Xuyang, TAN Zhiyi   

  1. School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • Received:2024-06-20 Revised:2024-12-03 Published:2025-07-17
  • About author:LUO Xuyang,born in 1999,postgra-duate.His main research interest is recommendation systems.
    TAN Zhiyi,born in 1986,Ph.D,lectu-rer.His main research interests include multimedia data mining,and sequence analysis and prediction.
  • Supported by:
    National Natural Science Foundation of China(62325206,61936005),Key Research and Development Program of Jiangsu Province(BE2023016-4) and Natural Science Foundation of Jiangsu Province(BK20210595).

摘要: 基于知识图谱的推荐模型通过捕捉交互物品在知识图谱上的实体关联,实现对用户偏好的精准建模,从而提高推荐的准确性。然而,现有工作忽略了交互图的噪声问题和稀疏性问题,限制了模型对实体关联的捕捉效率,导致用户偏好建模出现偏差,从而无法获得最优结果。为了解决上述问题,提出了一种基于知识感知的图优化推荐模型(Knowledge-aware Graph Refinement Network,KGRN)。具体来说,首先设计了一个图修剪模块,利用知识图谱的语义信息来动态修剪交互图中的噪声交互;然后设计了一个图构建模块来缓解交互图的数据稀疏性,提高模型挖掘用户偏好的实体能力,增强用户偏好建模。为了验证KGRN的有效性,在3个基准数据集上进行了对比实验。相较于现有模型,KGRN在MovieLens-1M上的表现提升了2.97%,在Amazon-Book上的表现提升了1.69%,在BookCrossing上的表现提升了2.22%。实验结果证明了所提模型的有效性。

关键词: 图神经网络, 知识图谱, 特征学习, 推荐系统, 特征融合

Abstract: Knowledge graph-based recommendation models achieve accurate user preference modeling by capturing entity associations of interaction items on the knowledge graph,thereby enhancing recommendation accuracy.However,existing research ignores the noise and sparsity issues in the interaction graph,which limits the model's ability to capture entity associations and leads to biased,ultimately leading to suboptimal results.To address these issues,this paper proposes a model named knowledge-aware graph refinement network(KGRN).Specifically,a graph pruning module is designed that utilizes semantic information from the knowledge graph to dynamically prune noisy interactions in the interaction graph.Additionally,a graph construction module is developed to mitigate data sparsity in the interaction graph,enhance the model's capability to identify user preference entities,and improve user preference modeling.Comparative experiments are conducted on three benchmark datasets to evaluate the effectiveness of KGRN.Compared to existing models,KGRN achieves performance improvements of 2.97% on MovieLens-1M,1.69% on Amazon-Book,and 2.22% on BookCrossing,demonstrating the effectiveness of the proposed model.

Key words: Graph neural networks, Knowledge graphs, Feature Learning, Recommendation systems, Feature fusion

中图分类号: 

  • TP391
[1]WANG H,ZHANG F,XIE X,et al.DKN:Deep Knowledge-Aware Network for News Recommendation[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web.2018:1835-1844.
[2]WANG X,HE X,CAO Y,et al.KGAT:Knowledge Graph Attention Network for Recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2019:950-958.
[3]ZHANG F,YUAN N J,LIAN D,et al.Collaborative Knowledge Base Embedding for Recommender Systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:353-362.
[4]CAO Y,WANG X,HE X,et al.Unifying Knowledge GraphLearning and Recommendation:Towards a Better Understan-ding of User Preferences[C]//The World Wide Web Confe-rence.2019:151-161.
[5]MA W,ZHANG M,CAO Y,et al.Jointly Learning Explainable Rules for Recommen-dation with Knowledge Graph[C]//The World Wide Web Conference.ACM,2019:1210-1221.
[6]ZHAO H,YAO Q,LI J,et al.Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2017:635-644.
[7]CHEN H,LI Y,SUN X,et al.Temporal Meta-path Guided Explainable Recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining.2021:1056-1064.
[8]WANG H,ZHANG F,WANG J,et al.RippleNet:Propagating User Preferences on the Knowledge Graph for Recommender Systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.ACM,2018:417-426.
[9]WANG Z,LIN G,TAN H,et al.CKAN:Collaborative Know-ledge-aware Attentive Network for Recommender Systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2020:219-228.
[10]WANG X,HUANG T,WANG D,et al.Learning Intents behind Interactions with Knowledge Graph for Recommendation[C]//Proceedings of the Web Conference 2021.2021:878-887.
[11]DU Y,ZHU X,CHEN L,et al.HAKG:Hierarchy-AwareKnowledge Gated Network for Recommendation[J].arXiv:2204.04959,2022.
[12]BORDES A,USUNIER N,GARCÍA-DURÁN A,et al.Translating Embeddings for Modeling Multi-relational Data[C]//Proceedings of the 27th International Conference onNeural Information Processing Systems.2013:2787-2795.
[13]WANG Z,LI J Z.Text-Enhanced Representation Learning forKnowledge Graph[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.2016:1293-1299.
[14]MA T,HUANG L,LU Q,et al.Kr-gcn:Knowledge-aware reasoning with graph convolution network for explainable recommendation[J].ACM Transactions on Information Systems,2023,41(1):1-27.
[15]ZHAO N,LONG Z,WANG J,et al.AGRE:A knowledge graph recommendation algorithm based on multiple paths embeddings RNN encoder[J].Knowledge-Based Systems,2023,259:110078.
[16]QIN Y,GAO C,WEI S,et al.Learning from hierarchical structure of knowledge graph for recommendation[J].ACM Transactions on Information Systems,2023,42(1):1-24.
[17]CUI Y,YU H,GUO X,et al.RAKCR:Reviews sentiment-aware based knowledge graph convolutional networks for Personalized Recommendation[J].Expert Systems with Applications,2024,248:123403.
[18]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174.
[19]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648.
[20]WANG W,FENG F,HE X,et al.Denoising Implicit Feedback for Recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining.2021:373-381.
[21]DAI E,AGGARWAL C,WANG S.NRGNN:Learning a Label Noise Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2021:227-236.
[22]TIAN C,XIE Y,LI Y,et al.Learning to Denoise Unreliable Interactions for Graph Collaborative Filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:122-132.
[23]MU S,LI Y,ZHAO W X,et al.Alleviating Spurious Correlations in Knowledge-aware Recommendations through Counterfactual Generator[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:1401-1411.
[24]FENG F,HE X,LIU Y,et al.Learning on Partial-Order Hypergraphs[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web.2018:1523-1532.
[25]WANG Y,TANG S,LEI Y,et al.DisenHAN:DisentangledHeterogeneous Graph Attention Network for Recommendation[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management.2020:1605-1614.
[26]ZHAO W X,HOU Y,PAN X,et al.Recbole 2.0:Towards a more up-to-date recommendation library[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management.2022:4722-4726.
[27]WANG H,ZHANG F,ZHANG M,et al.Knowledge-awareGraph Neural Networks with Label Smoothness Regularization for Recommender Systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2019:968-977.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!