计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 255-261.doi: 10.11896/jsjkx.240400079

• 人工智能 • 上一篇    下一篇

基于博弈论的混合粒子群的多无人机任务分配

王荣杰, 张亮   

  1. 武汉理工大学数学与统计学院 武汉 430070
  • 收稿日期:2024-04-11 修回日期:2024-08-07 发布日期:2025-07-17
  • 通讯作者: 张亮(285684@whut.edu.cn)
  • 作者简介:(1404420512@qq.com)

Multi-UAV Task Assignment Based on Hybrid Particle Swarms Algorithm with Game Theory

WANG Rongjie, ZHANG Liang   

  1. School of Mathematics and Statistics, Wuhan University of Technology, Wuhan 430070, China
  • Received:2024-04-11 Revised:2024-08-07 Published:2025-07-17
  • About author:WANG Rongjie,born in 2000,master.His main research interests include acoustic far-field imaging and flight path planning based on nonlinear optimization theory and swarm intelligence algorithm.
    ZHANG Liang,born in 1977,Ph.D,professor.His main research interests include control theory and intelligent computing.

摘要: 综合考虑无人机载荷上限、航迹代价、任务时间偏差和任务收益构造任务分配模型,基于博弈论提出了改进粒子群算法,以解决多无人机协同任务分配问题(MTAP)。通过实数编码、死锁修复将粒子解码为可行的任务序列,建立了粒子向量与任务序列之间的映射;将群体优化的演化博弈论中的演化稳定策略引入粒子群算法,利用博弈操作得到博弈均衡点,并对标准粒子群的控制参数进行自适应调整,平衡标准粒子群算法的全局和局部搜索能力。为解决粒子易陷入局部收敛的问题,提出一种跳出局部收敛策略,对粒子的个体最佳位置向量进行改进,以达到增强社会认知的效果。实例仿真分析表明,与现有算法相比,所提算法能够有效解决多无人机同时打击场景中的任务分配问题。

关键词: 多无人机, 任务分配, 演化博弈, 标准粒子群算法, 演化稳定策略

Abstract: By considering maximum UAV load,track cost,task time deviation and task benefit to construct a task allocation model,this paper proposes an improved particle swarm optimization algorithm based on game theory to solve the multi-UAV cooperative task assignment problem(MTAP).The principle of the algorithm decodes the particles into feasible task sequences by real number encoding and deadlock repair,as well as establishes the mapping between particle vector and task sequences.By involving the evolutionary stability strategy of the evolutionary game theory in the particle swarm optimization,and by game operation,the game equilibrium point is obtained,which is utilized to adaptively adjust the control parameters of the standard particle swarm to balance the global and local search capabilities of the algorithm.This paper also proposes a strategy avoiding stuck in local convergence,by improving the individual optimal position vector of particles to achieve the effect of enhancing social cognition.Upon simulation analysis,as well as comparing with the existing algorithms,the proposed algorithm shows efficiency in the task allocation problem of multiple UAVs.

Key words: Multi-UAV, Task assignment, Evolutionary game theory, Standard particle swarm algorithm, Evolutionary stabilization strategy

中图分类号: 

  • TP301.6
[1]NIU Y F,XIAO X J,KE G Y.Operation concept and key techniques of unmanned aerial vehicle swarms[J].National Defense Science and Technology,2013,34(5):37-43.
[2]GUO J F,ZHENG H X,TAO J,et al.Summary of key technologies for heterogeneous unmanned system cooperative operations[J].Journal of Astronautics,2020,41(6):686-696.
[3]WANG X W,WANG H,ZHANG H Y,et al.A mini review on UAV mission planning[J].Journal of Industrial and Management Optimization,2023,19(5):3362-3382.
[4]QI X G,LI B,FAN S Y,et al.A survey of mission planning on UAVs systems based on multiple constraints[J].CAAI Transactions on Intelligent Systems,2020,15(2):204-217.
[5]YANG X,WANG R,ZHANG T.Review of unmanned aerial vehicle swarm path planning based on intelligent optimization[J].Control Theory and Applications,2020,37(11):2291-2302.
[6]HAN Q T,GAO X Y.Research on Cooperative Task Allocation and Route Plan Based on PSO[J].Basic and Clinical Pharmaco-logy and Toxicology,2019,124:242.
[7]BHETIWAL S,MISRA S K.Survey on task scheduling with ant colony optimization[C]//2023 third International Conference on Secure Cyber Computing and Communication.Jalandhar,India:IEEE,2023.
[8]WANG L,XU C,LI M,et al.Improved particle swarm optimization algorithm for cooperative task assignment of multiple vehicles[J].Acta Armamentarii,2023,44(8):2224-2232.
[9]MEIDANI K,HEMMASIAN A,MIRJALILI S,et al.Adaptive grey wolf optimizer[J].Neural Computing and Applications,2022,34(10):7711-7731.
[10]ZHU Z X,TANG B W,YUAN J P.Multirobot task allocation based on an improved particle swarm optimization approach[J].International Journal of Advanced Robotic Systems,2017,14(3):1-22.
[11]LI W,ZHANG W.Method of tasks allocation of multi-UAVsbased on particles swarm optimization[J].Journal of Control and Decision,2010,25(9):1359-1363.
[12]CHAUHAN P,DEEP K,PANT M.Novel inertia weight strategies for particle swarm optimization[J].Memetic Computing,2013,5(3):229-251.
[13]ZHANG R P,FENG Y X,YANG Y K.Hybrid particle swarm algorithm for multi-UAVs cooperative task allocation[J].Acta Aeronautica Et Astronautica Sinica,2022,43(12):418-433.
[14]JAIN M,SAIHJPAL V,SINGH N,et al.An Overview of Va-riants and Advancements of PSO Algorithm[J].Applied Sciences,2022,12:8392.
[15]MOAZEN H,MOLAEI S,FARZINVASH L,et al.PSO-ELPM:PSO with elite learning,enhanced parameter updating,and exponential mutation operator[J].Information Sciences:an International Journal,2023,628:70-91.
[16]YAN M,YUAN H M,XU J,et al.Task allocation and route planning of multiple UAVs in a marine environment based on an improved particle swarm optimization algorithm[J].EURASIP Journal on Advances in Signal Processing,2021,2021(1):1-23.
[17]SAHU B,DAS P K,KUMAR R.A modified cuckoo search algorithm implemented with SCA and PSO for multi-robot cooperation and path planning[J].Cognitive Systems Research,2023,79:24-42.
[18]ZAMBRANO M,CLERC M,ROJAS R.Standard ParticleSwarm Optimization 2011 at CEC-2013:A baseline for future PSO improvements[C]//2013 IEEE Congress on Evolutionary Computation.2013:2337-2344.
[19]COFFMAN E G,ELPHICK M,SHOSHANI A.System Deadlocks[J].ACM Computing Surveys,1971,3(2):67-78.
[20]CHEN Y B,YANG D,YU J Q.Multi-UAV Task Assignment With Parameter and Time-Sensitive Uncertainties Using Modified Two-Part Wolf Pack Search Algorithm[J].IEEE Transactions on Aerospace & Electronic Systems,2018,54(6):2853-2872.
[21]TAYLOR P D,JONKER L B.Evolutionarily stable strategies and game dynamics.[J].Math.Biosci.,1978,40(1):145-156.
[22]FLORI A,OULHADJ H,SIARRY P.Quantum Particle Swarm Optimization:an auto-adaptive PSO for local and global optimization[J].Computational Optimization and Applications,2022,82(2):525-559.
[23]FAN Y,LI W F,HE L J.The Collaborative Scheduling ofMulti-Mobile Robots in Intelligent Warehouse Based on the Improved Genetic Algorithm[J].Journal of Wuhan University of Technology,2019,41(3):293-298.
[24]BONYADI M R,MICHALEWICZ Z.Analysis of Stability,Local Convergence,and Transformation Sensitivity of a Variant of the Particle Swarm Optimization Algorithm[J].IEEE Transactions on Evolutionary Computation,2016,20(3):370-385.
[25]DU W L,ZHANG F.Genetic mechanism-enhanced standard particle swarm optimization 2011[J].Soft Computing-A Fusion of Foundations,Methodologies & Applications,2018,22(21):7207-7225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!