计算机科学 ›› 2022, Vol. 49 ›› Issue (2): 231-240.doi: 10.11896/jsjkx.210400249

• 人工智能 • 上一篇    下一篇

空间众包任务的路径动态调度方法

沈彪, 沈立炜, 李弋   

  1. 复旦大学计算机科学技术学院 上海201203
    上海市数据科学重点实验室(复旦大学) 上海201203
  • 收稿日期:2021-04-23 修回日期:2021-06-08 出版日期:2022-02-15 发布日期:2022-02-23
  • 通讯作者: 沈立炜(shenliwei@fudan.edu.cn)
  • 作者简介:1105125966@qq.com
  • 基金资助:
    国家高技术研究发展计划(863计划)(2018YB1004800)

Dynamic Task Scheduling Method for Space Crowdsourcing

SHEN Biao, SHEN Li-wei, LI Yi   

  1. School of Computer Science,Fudan University,Shanghai 201203,ChinaShanghai Key Laboratory of Data Science (Fudan University),Shanghai 201203,China
  • Received:2021-04-23 Revised:2021-06-08 Online:2022-02-15 Published:2022-02-23
  • About author:SHEN Biao,born in 1996,postgraduate.His main research interests include the fusion of the ternary human-machine-thing and mobile cloud computing software system.
    SHEN Li-wei,born in 1982,Ph.D,associate professor.His main researchin-terests include the fusion of the ternary human-machine-thing,mobile application development and analysis,etc.
  • Supported by:
    National High Technology Research and Development Program of China(2018YB1004800).

摘要: 空间众包用于解决带时空约束的线下众包任务,近几年得到了快速发展。任务调度是空间众包的重要研究方向,难点在于调度过程中任务和工作者的动态不确定性。为了高效地进行任务路径动态调度,提出了同时考虑任务和工作者的不确定性的空间众包任务路径动态调度方法,该方法进行了3方面的改进。首先,扩展了调度需要考虑的因素,除了考虑新增任务的时空属性不确定性之外,还考虑了新增工作者的交通方式和时空属性的不确定性。其次,对调度策略进行改进,通过使用聚合调度策略,对动态新增任务先进行聚合处理,随后再进行任务分配和路径优化,相比传统非聚合调度计算时间显著减少。最后,对调度算法进行改进,基于传统遗传算法,将任务分配和路径优化操作迭代进行,相比先进行任务分配再进行路径优化的调度算法,提高了获取最优结果的准确性。此外,文中设计并实现了基于真实地图导航的空间众包任务路径动态调度模拟平台,并基于该平台验证了所提方法的有效性。

关键词: 空间众包, 路径规划, 任务调度, 任务分配, 遗传算法

Abstract: Space crowdsourcing is used to solve offline crowdsourcing tasks with time and space constraints,and it has developed rapidly in recent years.Task scheduling is an important research direction of space crowdsourcing.The difficulty lies in the dynamic uncertainty of tasks and workers in the scheduling process.In order to efficiently perform task scheduling,a dynamic task scheduling method for space crowdsourcing that considers the uncertainty of tasks and workers at the same time is proposed.The method has been improved in three aspects.First,the factors that need to be considered for scheduling are expanded.In addition to considering the uncertainty of the temporal and spatial attributes of the newly added tasks,it also considers the uncertainty of the transportation mode and temporal and spatial attributes of the newly added workers.Then,the scheduling strategy is improved.By using the aggregate scheduling strategy,the dynamically added tasks are aggregated first,and then the task allocation and path optimization are performed.Compared with the traditional non-aggregated scheduling,the calculation time is significantly reduced.The last aspect is to improve the scheduling algorithm.Based on the traditional genetic algorithm,the task allocation and path optimization operations are performed iteratively.Compared with the scheduling algorithm that first allocates tasks and then optimizes the path,it improves the accuracy of the optimal results.In addition,a simulation platform for dynamic scheduling of space crowdsourcing task paths based on real map navigation is designed and implemented,and the method is verified by this platform.

Key words: Genetic algorithm, Route planning, Space crowdsourcing, Task allocation, Task scheduling

中图分类号: 

  • TP311
[1]FAN Z J,SHEN L W,PENG X,et al.Multi stage task allocation on constrained spatial crowdsourcing[J].Chinese Journal of Computers,2019,42(12):2722-2741.
[2]WANG K,WANG Z J.Crowdsourcing Collaboration ProcessRecovery Method[J].Computer Science,2020,47(10):19-25.
[3]GUMMIDI S R B,XIE X,PEDERSEN T B.A survey of spatial crowdsourcing[J].ACM Transactions on Database Systems,2019,44(2):1-46.
[4]SUN D,XU K,CHENG H,etal.Online delivery route recommendation in spatial crowdsourcing[J].World Wide Web,2019,22(5):2083-2104.
[5]TAO Q,ZENG Y,ZHOU Z,et al.Multi-worker-aware taskplanning in real-time spatial crowdsourcing[C]//International Conference on Database Systems for Advanced Applications.Springer,2018:301-317.
[6]LIU G R.Study on express route optimization problem withsimultaneous delivery and pickup under dynamic demands[D].Chongqing :Chongqing University,2018.
[7]LIU M,SHEN Y,SHI Y.A hybrid brain storm optimization algorithm for dynamic vehicle routing problem[C] //International Conference on Swarm Intelligence.Springer,2020:251-258.
[8]LU X,TANG K,MENZEL S,et al.A competitive co-evolutio-nary optimizationmethod for the dynamic vehicle routing pro-blem[C]//Symposium Series on Computational Intelligence.IEEE,2020:305-312.
[9]SBAI I,KRICHEN S.An adaptive genetic algorithm for dyna-mic vehicle routingproblem with backhaul and two-dimensional loa-ding constraints[C]//International Multi-Conference on Organization of Knowledge and Advanced Technologies.IEEE,2020:1-7.
[10]TONG Y,ZHOU Z,ZENG Y,et al.Spatial crowdsourcing:asurvey[J].The VLDB Journal,2020,29(1):217-250.
[11]DENG D,SHAHABI C,DEMIRYUREK U.Maximizing thenumber of worker's self-selected tasks in spatial crowdsourcing[C]//21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.ACM,2013:324-333.
[12]COSTA C F,NASCIMENTO M A.In-route task selection incrowdsourcing[C]//26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.ACM,2018:524-527.
[13]ZHANG J,YANG F,WENG X.An evolutionary scatter search particle swarm optimization algorithm for the vehicle routing problem with time windows[J].IEEE Access,2018,6:63468-63485.
[14]YU D H,CHENG T,YUAN X.Software Crowdsourcing TaskRecommendation Algorithm Based on Learning to Rank[J].Computer Science,2020,47(12):106-113.
[15]LI Y,YIU M L,XU W.Oriented online route recommendationfor spatial crowd sourcing task workers[C]//International Symposium on Spatial and Temporal Databases.Springer,2015:137-156.
[16]COSLOVICH L,PESENTI R,UKOVICH W.A two-phase insertion technique of unexpected customers for a dynamic dial-a-ride problem[J].European Journal of Operational Research,2006,175(3):1605-1615.
[17]ASGHARI M,SHAHABI C.On on-line task assignment in spatial crowdsourcing[C]//International Conference on Big Data (Big Data).IEEE,2017:395-404.
[18]HU Z H,SHEU J B,ZHAO L,et al.A dynamic closed-loop vehicle routingproblem with uncertainty and incompatible goods[J].Transportation Research Part C:Emerging Technologies,2015,55:273-297.
[19]MU Q,FU Z,LYSGAARD J,et al.Disruption management ofthe vehicle routingproblem with vehicle breakdown[J].Journal of the Operational Research Society,2011,62(4):742-749.
[20]GÜNER A R,MURAT A,CHINNAM R B.Dynamic routingunder recurrentand non-recurrent congestion using real-time its information[J].Computers & Operations Research,2012,39(2):358-373.
[21]CHO E,MYERS S A,LESKOVEC J.Friendship and mobility:user movement inlocation-based social networks[C]//17th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.ACM,2011:1082-1090.
[22]SUN Y,WANG J,TAN W.Dynamic worker-and-task assignment on uncertain spatial crowdsourcing[C]//22nd Internatio-nal Conference on Computer Supported Cooperative Work in Design.IEEE,2018:755-760.
[23]FELDMAN J,MEHTA A,MIRROKNI V,et al.Online sto-chastic matching:Beating 1-1/e[C]//50th Symposium on Foundations of Computer Science.IEEE,2009:117-126.
[1] 王兵, 吴洪亮, 牛新征.
基于改进势场法的机器人路径规划
Robot Path Planning Based on Improved Potential Field Method
计算机科学, 2022, 49(7): 196-203. https://doi.org/10.11896/jsjkx.210500020
[2] 杨浩雄, 高晶, 邵恩露.
考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题
Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery
计算机科学, 2022, 49(6A): 191-198. https://doi.org/10.11896/jsjkx.210400005
[3] 谭任深, 徐龙博, 周冰, 荆朝霞, 黄向生.
海上风电场通用运维路径规划模型优化及仿真
Optimization and Simulation of General Operation and Maintenance Path Planning Model for Offshore Wind Farms
计算机科学, 2022, 49(6A): 795-801. https://doi.org/10.11896/jsjkx.210400300
[4] 谭珍琼, 姜文君, 任演纳, 张吉, 任德盛, 李晓鸿.
基于二分图的个性化学习任务分配
Personalized Learning Task Assignment Based on Bipartite Graph
计算机科学, 2022, 49(4): 269-281. https://doi.org/10.11896/jsjkx.210500125
[5] 田冰川, 田臣, 周宇航, 陈贵海, 窦万春.
减少Hadoop集群中网络队头阻塞的调度算法
Reducing Head-of-Line Blocking on Network in Hadoop Clusters
计算机科学, 2022, 49(3): 11-22. https://doi.org/10.11896/jsjkx.210900117
[6] 谭双杰, 林宝军, 刘迎春, 赵帅.
基于机器学习的分布式星载RTs系统负载调度算法
Load Scheduling Algorithm for Distributed On-board RTs System Based on Machine Learning
计算机科学, 2022, 49(2): 336-341. https://doi.org/10.11896/jsjkx.201200126
[7] 吴善杰, 王新.
基于AGA-DBSCAN优化的RBF神经网络构造煤厚度预测方法
Prediction of Tectonic Coal Thickness Based on AGA-DBSCAN Optimized RBF Neural Networks
计算机科学, 2021, 48(7): 308-315. https://doi.org/10.11896/jsjkx.200800110
[8] 王政, 姜春茂.
一种基于三支决策的云任务调度优化算法
Cloud Task Scheduling Algorithm Based on Three-way Decisions
计算机科学, 2021, 48(6A): 420-426. https://doi.org/10.11896/jsjkx.201000023
[9] 陈镜宇, 郭志军, 尹亚昆.
基于混合算法的智能割草机全遍历路径规划及其系统设计
Full Traversal Path Planning and System Design of Intelligent Lawn Mower Based on Hybrid Algorithm
计算机科学, 2021, 48(6A): 633-637. https://doi.org/10.11896/jsjkx.201100002
[10] 郑增乾, 王锟, 赵涛, 蒋维, 孟利民.
带宽和时延受限的流媒体服务器集群负载均衡机制
Load Balancing Mechanism for Bandwidth and Time-delay Constrained Streaming Media Server Cluster
计算机科学, 2021, 48(6): 261-267. https://doi.org/10.11896/jsjkx.200400131
[11] 王金恒, 单志龙, 谭汉松, 王煜林.
基于遗传优化PNN神经网络的网络安全态势评估
Network Security Situation Assessment Based on Genetic Optimized PNN Neural Network
计算机科学, 2021, 48(6): 338-342. https://doi.org/10.11896/jsjkx.201200239
[12] 左剑凯, 吴杰宏, 陈嘉彤, 刘泽源, 李忠智.
异构无人机编队防御及评估策略研究
Study on Heterogeneous UAV Formation Defense and Evaluation Strategy
计算机科学, 2021, 48(2): 55-63. https://doi.org/10.11896/jsjkx.191100053
[13] 杜婉茹, 王潇茵, 田涛, 张越.
面向未知环境及动态障碍的人工势场路径规划算法
Artificial Potential Field Path Planning Algorithm for Unknown Environment and Dynamic Obstacles
计算机科学, 2021, 48(2): 250-256. https://doi.org/10.11896/jsjkx.191100170
[14] 郭启程, 杜晓玉, 张延宇, 周毅.
基于改进鲸鱼算法的无人机三维路径规划
Three-dimensional Path Planning of UAV Based on Improved Whale Optimization Algorithm
计算机科学, 2021, 48(12): 304-311. https://doi.org/10.11896/jsjkx.201000021
[15] 姚泽玮, 林嘉雯, 胡俊钦, 陈星.
基于PSO-GA的多边缘负载均衡方法
PSO-GA Based Approach to Multi-edge Load Balancing
计算机科学, 2021, 48(11A): 456-463. https://doi.org/10.11896/jsjkx.210100191
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!