计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 320-329.doi: 10.11896/jsjkx.240700167

• 人工智能 • 上一篇    下一篇

面向狭窄环境的机器人室内导航系统

董敏, 谭皓禹, 毕盛   

  1. 华南理工大学计算机科学与工程学院 广州 510006
  • 收稿日期:2024-07-25 修回日期:2024-10-21 出版日期:2025-09-15 发布日期:2025-09-11
  • 通讯作者: 毕盛(picy@scut.edu.cn)
  • 作者简介:(hollymin@scut.edu.cn)
  • 基金资助:
    广东省科技计划(2020A0505100015);高校教师特色创新研究项目(2022DZXX03)

Robot Indoor Navigation System for Narrow Environments

DONG Min, TAN Haoyu, BI Sheng   

  1. School of Computer Science & Engineering,South China University of Technology,Guangzhou 510006,China
  • Received:2024-07-25 Revised:2024-10-21 Online:2025-09-15 Published:2025-09-11
  • About author:DONG Min,born in 1977,Ph.D,asso-ciate professor.Her main research interest is intelligent system and application.
    BI Sheng,born in 1978,Ph.D,associate professor,is a member of CCF(No.97471M).His main research interest is intelligent robot.
  • Supported by:
    Guangdong Provincial Science and Technology Plan(2020A0505100015) and Research Project on Innovative Characteristics of College Teachers(2022DZXX03).

摘要: 在机器人领域中,安全地通过狭窄环境是机器人自主可靠地执行导航任务的关键之一。对于多种误差源导致的机器人无法安全通过狭窄环境的问题,提出了面向狭窄环境的机器人室内导航系统。该系统在导航过程中根据地图中障碍物与全局路径的几何关系标记狭窄环境,并生成合适通行位姿对;机器人出入被标记的狭窄环境时自动切换导航策略,以自适应环境;在狭窄环境导航策略中,全局成本地图膨胀化,以规划更安全的全局路径,机器人根据合适通行位姿分段规划全局路径,目的为提前调整位姿以减少在狭窄环境中的转向需求,并通过将最优控制问题转换为最小二乘问题的思想优化MPC路径跟踪方法,用于代替局部轨迹规划方法计算轨迹,防止局部轨迹碰撞误判导致导航失败。仿真及真实环境实验结果表明,该系统能够有效提升机器人面对狭窄环境时的通过率,使机器人更加安全稳定地执行导航任务。

关键词: 导航系统, 狭窄环境, 自适应, 合适通行位姿, 路径跟踪

Abstract: In the field of robotics,safe passage through narrow environments is one of the keys for robots to perform navigation tasks autonomously and reliably.To solve the problem that robots cannot safely pass through narrow environment due to multiple error sources,this paper proposes the robot indoor navigation system for narrow environments.In the course of navigation,the system marks the narrow environment according to the geometric relationship between the obstacles and the global path in the map and generates suitable traffic poses.When the robot enters and exits the marked narrow environment,it automatically swi-tches the corresponding navigation strategy to adapt the environment.In the narrow environment navigation strategy,the global cost map is inflated to plan a safer global path,and the robot plans the global path in segments according to the suitable traffic poses,aiming to adjust the pose in advance to reduce the turning demand in the narrow environment.The MPC path tracking method is optimized by converting the optimal control problem into the least squares problem.It replaces the local path planning method to calculate the trajectory,and prevents the misjudgment of local trajectory collision resulting in navigation failure.The simulation and real environment experiment results show that the system can effectively improve the passing rate of the robot in the narrow environment,so that the robot can perform the navigation task more safely and stably.

Key words: Robot navigation, Narrow environment, Automatic adaptation, Suitable traffic pose, Path tracking

中图分类号: 

  • TP242
[1]HSIEH Y Z,KU X L,LIN S S.The development of assisted-visually impaired people robot in the indoor environment based on deep learning[J].Multimedia Tools and Applications,2024,83(3):6555-6578.
[2]MORA A,PRADOS A,MENDEZ A,et al.ADAM:a robotic companion for enhanced quality of life in aging populations[J].Frontiers in Neurorobotics,2024,18:1337608.
[3]HUANG J,THUROW K,JUNGINGER S,et al.IoT basedLabware Tracking during Mobile Robot Transportation[C]//2023 12th International Conference on Control,Automation and Information Sciences(ICCAIS).2023:405-410.
[4]YUAN H,LI H,ZHANG Y,et al.Comparison andImprove-ment of Local Planners on ROS for Narrow Passages[C]//2022 International Conference on High Performance Big Data and Intelligent Systems(HDIS).2022:125-130.
[5]ROSMANN C,FEITEN W,WOSCH T,et al.Trajectory modification considering dynamic constraints of autonomous robots[C]//7th German Conference on Robotics(ROBOTIK 2012).2012:1-6.
[6]FOX D,BURGARD W,THRUN S.The dynamic window ap-proach to collision avoidance[J].IEEE Robotics & Automation Magazine,1997,4(1):23-33.
[7]LUANT T,WANG H,YOU B,et al.TEB unmanned vehicle navigation method for position and attitude auxiliary points in narrow space[J].Chinese Journal of Scientific Instrument,2023,44(4):121-128.
[8]MORENO F A,MONROY J,RUIZ-SARMIENTO J R,et al.Automatic waypoint generation to improve robot navigation through narrow spaces[J].Sensors,2019,20(1):240.
[9]ZHONG T,WEI F,ZHAI Z,et al.An Untethered Miniature Soft Jumping Robot Inspired by Quadrupeds[J].Journal of Bionic Engineering,2023,20(4):1467-1480.
[10]LIU J,WANG Y,LI M,et al.Joint Linkage and Motion System Design of Pipeline Detecting Snake Robot[C]//2023 35th Chinese Control and Decision Conference(CCDC).2023:1545-1550.
[11]LIU Y,BARATI F A.An Energy-Saving Snake Locomotion Pattern Learned in a Physically Constrained EnvironmentWith Online Model-Based Policy Gradient Method[J].Journal of Mechanisms and Robotics,2023,15(4):041007.
[12]SALARIS P,VASSALLO C,SOUERES P,et al.The geometry of confocal curves for passing through a door[J].IEEE Transactions on Robotics,2015,31(5):1180-1193.
[13]KIM S,CHEONG H,KIM D H,et al.Context-based objectrecognition for door detection[C]//2011 15th International Con-ference on Advanced Robotics(ICAR).2011:155-160.
[14]DAI D W,JIANG G L,XIN J,et al.Detecting,locating and crossing a door for a wide indoor surveillance robot[C]//2013 IEEEInternational Conference on Robotics and Biomimetics(ROBIO).2013:1740-1746.
[15]KIM B K,TANAKA H,SUMI Y.Robotic wheelchair using a high accuracy visual markerlentibar and its application to door crossing navigation[C]//2015 IEEE International Conference on Robotics and Automation(ICRA).2015:4478-4483.
[16]GASPARETTO A,BOSCARIOL P,LAN-ZUTTI A,et al.Path planning and trajectory planning algorithms:A general overview[J/OL].Paoloboscariol.altervista.org/50.pdf.
[17]LIN Y C,CHOU C C,LIAN F L.Indoor robot navigation based on DWA*:Velocity space approach with region analysis[C]//2009 ICCAS-SICE.2009:700-705.
[18]SAMUEL M,HUSSEIN M,MOHAMAD M B.A review ofsome pure-pursuit based path tracking techniques for control of autonomous vehicle[J].International Journal of Computer Applications,2016,135(1):35-38.
[19]JOHNSON M A,MORADI M H.PID control[M].London:Springer-Verlag,2005.
[20]MORALES S,MAGALLANES J,DEL-GADO C,et al.LQRtrajectory tracking control of an omnidirectional wheeled mobile robot[C]//2018 IEEE 2nd Colombian Conference on Robotics and Automation(CCRA).2018:1-5.
[21]BAI G,MENG Y,LIU L,et al.Review and comparison of path tracking based on model predictive control[J].Electronics,2019,8(10):1077.
[22]VARMA B,SWAMY N,MUKHERJEE S.Trajectory tracking of autonomous vehicles using different control techniques(pid vs lqr vs mpc)[C]//2020 International Conference on Smart Technologies in Computing,Electrical and Electronics(ICSTCEE).2020:84-89.
[23]ROSMANN C,MAKAROW A,BERTRAM T.Online motionplanning based on nonlinear model predictive control withnon-euclidean rotation groups[C]//2021 European Control Confe-rence(ECC).2021:1583-1590.
[24]KUMMERLE R,GRISETTI G,STRASDAT H,et al.G2O:A general framework for graph optimization[C]//2011 IEEE International Conference on Robotics and Automation.2011:3607-3613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!