计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 270-280.doi: 10.11896/jsjkx.240400173

• 人工智能 • 上一篇    下一篇

有限值终态零化神经网络及其在机器人运动规划中的应用

汪黎明, 仲国民, 孙明轩, 何熊熊   

  1. 浙江工业大学信息工程学院 杭州 310023
  • 收稿日期:2024-04-24 修回日期:2024-09-14 出版日期:2025-05-15 发布日期:2025-05-12
  • 通讯作者: 仲国民(zgm@zjut.edu.cn)
  • 作者简介:(792023809@qq.com)
  • 基金资助:
    国家自然科学基金(62073291,62222315)

Finitely-valued Terminal Zeroing Neural Networks with Application to Robotic Motion Planning

WANG Liming, ZHONG Guomin, SUN Mingxuan, HE Xiongxiong   

  1. School of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China
  • Received:2024-04-24 Revised:2024-09-14 Online:2025-05-15 Published:2025-05-12
  • About author:WANG Liming,born in 1996,doctoral student.His main research interests include neural computing and robot path planning.
    ZHONG Guomin,born in 1983,Ph.D,lecturer.His main research interests include system identification,iterative learning control,and neural computing.
  • Supported by:
    National Natural Science Foundation of China(62073291,62222315).

摘要: 针对等式约束的时变二次规划求解问题,提出一种有限值终态零化神经网络,以保证计算误差的有限时间收敛,其有限值特性易于实现;对有限值终态零化神经网络进行理论分析,并给出该神经网络的收敛时间表达式。冗余机械臂的重复运动规划问题可描述为时变二次规划问题,采用有限值终态零化神经网络作为求解器,以获取末端执行器轨迹对应的关节轨迹。考虑到机械臂关节初始偏差难以避免,采用定参数/自适应参数的终态优化指标,在实现机械臂末端位置误差的有限时间收敛的同时,提高重复运动规划的精度。为保证机械臂的平稳运行,提出一种平滑修正的有限值函数用于终态优化指标设计。理论分析机械臂末端执行器位置误差的有限时间收敛条件。数值仿真以及UR5机械臂仿真与实验结果,验证了所提计算方案的有效性。

关键词: 终态零化神经网络, 有限时间收敛, 终态优化指标, 冗余机械臂, 自适应参数, 重复运动规划

Abstract: To solve the problem of time-varying quadratic programming with equality constraints,this paper proposes a finitely-valued terminal zeroing neural network achieving the finite-time convergence of computing errors while being easy to implement.The convergence of the finitely-valued terminal zeroing neural network is theoretically analyzed,and the specific expression for settling time is provided.The repetitive motion planning problem of redundant robotic manipulators can be described as a time-varying quadratic programming.By employing the finitely-valued terminal zeroing neural network as a solver,the joint position and velocity trajectories,corresponding to the desired end-effector trajectory,can be obtained.Considering the inevitable initial joint shift,a terminal optimization criterion with fixed/adaptive parameters is proposed,aiming for finite-time convergence of end-effector position error and higher precision in repetitive motion planning.To ensure smooth operation of the robotic manipulator,a smooth-corrected finite-value function is proposed for the terminal optimization criterion,and the finite-time convergence of the end-effector position error is established.Numerical simulations and UR5 manipulator simulation and experimental results validate effectiveness of the proposed computing scheme.

Key words: Terminal zeroing neural networks, Finite-time convergence, Terminal optimization criterion, Redundant manipulators, Adaptive parameter, Repetitive motion planning

中图分类号: 

  • TP182
[1]ZHANG Y N,JIANG D C,WANG J.A recurrent neural net-work for solving Sylvester equation with time-varying coefficients[J].IEEE Transactions on Neural Networks,2002,13(5):1053-1063.
[2]JOHANSEN T A,FOSSEN T I,BERGE S P,Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming[J].IEEE Transactions on Control Systems Technology,2004,12(1):211-216.
[3]LEITHEAD W E,ZHANG Y.O(n2)-operation approximationof covariance matrix inverse in gaussian process regression based on quasi-newton BFGS method[J].Communications in Statistics Simulation and Computation,2007,524:216-228.
[4]ZHANG Y N,GE S S.A general recurrent neural network mo-del for time-varying matrix inversion[C]//Proceedings of the 42nd IEEE Conference on Decision and Control Maui.Hawaii USA,2003:6169-6174.
[5]XIAO X C,JIANG C Z,LU H Y,et al.A parallel computing method based on zeroing neural networks for time-varying complex-valued matrix Moore-Penrose inversion [J].Information Sciences,2020,36(2):367-380.
[6]XIAO L,ZHANG Y N,HU Z S,et al.Performance benefits of robust nonlinear zeroing neural network for finding accurate solution of Lyapunov equation in presence of various noises [J].IEEE Transactions on Industrial Informatics,2019,15(9):5161-5171.
[7]ZHANG Z J,LU Y Y,ZHENG Y Y,et al.A new varying-parameter convergent-differential neural-network for solving time-varying convex QP problem constrained by linear-equality[J].IEEE Transactions on Automatic Control,2018,63(12):4110-4125.
[8]ZHANG Y N,GE S S.Design and analysis of a general recurrent neural network model for time-varying matrix inversion[J].IEEE Transactions on Neural Networks,2005,13(5):1053-1063.
[9]LI S,CHEN S F,LIU B.Accelerating a recurrent neural net-work to finite-time convergence for Solving time-varying Sylvester equation by using a Sign-Bi-power activation function[J].Neural Processing Letters,2013,37(2):189-205.
[10]GUO D S,ZHANG Y N.Li-function activated ZNN with finite-time convergence applied to redundant-manipulator kinematic control via time-varying Jacobian matrix pseudoinversion[J].Applied Soft Computing,2014,24:158-168.
[11]LU H Y,JIN L,LUO X,et al.RNN for solving perturbed time-varying underdetermined linear system with double bound limits on residual errors and state variables[J].IEEE Transactions on Industrial Informatics,2019,15(11):5931-5942.
[12]JIN L,LIU F Y,LU H Y,et al.Saturation-allowed neural dynamics applied to perturbed time-dependent system of linear equations and robots[J].IEEE Transactions on Industrial Electronics,2021,68(10):9844-4854.
[13]SHAMIR T,YOMDIN Y.Repeatability of redundant manipulators:mathematical solution of the problem[J].IEEE Transactions on Automatic Control,1988,33(11):1001-1009.
[14]ZHANG Y N,TAN Z G,CHEN K,et al.Repetitive motion of redundant robots planned by three kinds of recurrent neural networks and illustrated with a four-link planar manipulator's straight-line example[J].Robotics and Autonomous Systems,2009,57(6/7):645-651.
[15]ZHANG Y N,ZHANG Z J.Design and experimentation of acceleration-level drift-free scheme aided by two recurrent neural networks[J].IET Control Theory & Applications,2013,7(1):25-42.
[16]KLEIN C A,HUANG C H.Review of pseudoinverse control for use with kinematically redundant manipulators[J]. IEEE Transactions on Systems,Man,and Cybernetics,1983,SMC-13(3):245-250.
[17]KRZYSZTOF T,ADAM R,IDA G.Lagrangian Jacobian inverse for nonholonomic robotic systems[J].Nonlinear Dynamics,2015,82(4):1923-1932.
[18]LIAO B L,LIU W.Pseudoinverse-Type Bi-Criteria Minimization Scheme for Redundancy Resolution of Robot Manipulators[J].Robotica,2015,33(10):2100-2113.
[19]ZHANG P C,REN X H,ZHANG Z J.An efficient self-motion scheme for redundant robot manipulators:a varying-gain neural self-motion approach[J].Robotica,2021,39(10):1897-1908.
[20]DANIEL E W.Resolved motion rate control of manipulators and human prostheses[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,1969,MMS-10(2):47-53.
[21]CHENG F T,CHEN T H,SUN Y Y.Resolving manipulator redundancy under inequality constraints[J].IEEE Journal on Robotics and Automation,1994,10(1):65-71.
[22]TAROKH M,ZHANG X M.Real-time motion tracking of robot manipulators using adaptive genetic algorithms[J].Journal of Intelligent & Robotic Systems,2014,74(3):697-708.
[23]LIU F,HUANG H L,LI B.A parallel learning particle swarmoptimizer for inverse kinematics of robotic manipulator[J].International Journal of Intelligent Systems,2021,36(10):6101-6132.
[24]LI S,ZHANG Y N,JIN L.Kinematic control of redundant manipulators using neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(10):2243-2254.
[25]ZHANG Y N,WANG J,XIA Y S.A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits[J].IEEE Transactions on Neural Networks,2003,14(3):658-667.
[26]XIAO L,ZHANG Y S,DAI J H,et al.A new noise-tolerant and predefined-time ZNN model for time-dependent matrix inversion[J].Neural Networks,2019,117(1):124-134.
[27]HU Z S,XIAO L,DAI J J,et al.A unified predefined-time con-vergent and robust ZNN model for constrained quadratic programming[J].IEEE Transactions on Industrial Informatics,2021,17(3):1998-2010.
[28]SUN M X,ZHANG Y,WU Y X,et al.On a finitely activated terminal RNN approach to time-variant problem solving[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(12):7289-7302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!