计算机科学 ›› 2025, Vol. 52 ›› Issue (10): 98-105.doi: 10.11896/jsjkx.241000033
胡永庆, 杨含, 刘子源, 秦广军, 戴庆龙
HU Yongqing, YANG Han, LIU Ziyuan, QING Guangjun, DAI Qinglong
摘要: 针对当前top-k流测量过滤算法依赖固定计数器阈值的问题,提出了基于活跃度预测机制的ACCF(Activity Counting Cuckoo Filter)测量结构。ACCF通过引入活跃度预测机制,利用时间序列分析和指数加权移动平均(Exponentially Weighted Moving Average,EWMA)机制,动态计算网络流的活跃度,实现对潜在的top-k流的实时识别与提前过滤。针对哈希冲突可能导致的精度损失,ACCF引入了自刷新存储表(Self-Refreshing Storage Table,SRST),用于存储踢出路径上的网络流信息。当踢出操作达到设定的MaxNumKicks值时,SRST会在局部范围内优先踢出活跃度最小的网络流项,避免重要流量信息丢失。实验结果证明,ACCF与SRST在合适的参数组合条件下,可以提前过滤65%左右的大流并减少41%左右的插入操作,并显著提升了在top-k流量测量中的精度,尤其是在与传统的Space Saving(SS),CM Sketch,LUSketch和Cuckoo Counter算法对比时,展现了明显的优势。
中图分类号:
[1]ZHANG T,ZHANG Q,LEI Y,et al.Load balancing with traffic isolation in data center networks[J].Future Generation Computer Systems,2022,127:126-141. [2]LIU S,HE M,WU Z,et al.Spatial-temporal graph neural network traffic prediction based load balancing with reinforcement learning in cellular networks[J].Information Fusion,2024,103:102079. [3]HUANG Q,LEE P P C,BAO Y.Sketchlearn:Relieving userburdens in approximate measurement with automated statistical inference[C]//Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication.2018:576-590. [4]ZHANG X,WANG T.Elastic and reliable bandwidth reserva-tion based on distributed traffic monitoring and control[J].IEEE Transactions on Parallel and Distributed Systems,2022,33(12):4563-4580. [5]BISWAS R,WU J.Traffic engineering to minimize the number of rules in sdn datacenters[J].IEEE Transactions on Network Science and Engineering,2021,8(2):1467-1477. [6]ROBIN D D,KHAN J I.P4TE:PISA switch based traffic engineering in fat-tree data center networks[J].Computer Networks,2022,215:109210. [7]KUMAR R,VENKANNA U,TIWARI V.Optimized traffic engineering in Software Defined Wireless Network based IoT (SDWN-IoT):State-of-the-art,research opportunities and challenges[J].Computer Science Review,2023,49:100572. [8]SHI G,SHEN X,XIAO F,et al.DANTD:A deep abnormal network traffic detection model for security of industrial internet of things using high-order features[J].IEEE Internet of Things Journal,2023,10(24):21143-21153. [9]FERNÁNDEZ Y,SOTO J E,VERA S,et al.A streaming algo-rithm and hardware accelerator to estimate the empirical entropy of network flows[J].Computer Networks,2023,237:110035. [10]WU M,HUANG H,SUN Y E,et al.ActiveKeeper:an accurate and efficient algorithm for finding top-k elephant flows[J].IEEE Communications Letters,2021,25(8):2545-2549. [11]WANG H,XU H,HUANG L,et al.Fast and accurate trafficmeasurement with hierarchical filtering[J].IEEE Transactions on Parallel and Distributed Systems,2020,31(10):2360-2374. [12]KANNAN K,BANERJEE S.Compact TCAM:Flow entry compaction in TCAM for power aware SDN[C]//International Conference on Distributed Computing and Networking.Berlin:Springer,2013:439-444. [13]OZERY A,DIAMANT J, FEIBISH S L.RecenTo:FindingTop-K Flows of the Recent Past[J].Proceedings of the ACM on Networking,2024,2(CoNEXT3):1-20. [14]SHI Q,XU Y,QI J,et al.Cuckoo counter:Adaptive structure of counters for accurate frequency and top-k estimation[J].IEEE/ACM Transactions on Networking,2023,31(4):1854-1869. [15]ZHANG B,HUANG H,SUN Y E,et al.Jigsaw-Sketch:a fast and accurate algorithm for finding top-k elephant flows in high-speed networks[J].Science China Information Sciences,2024,67(4):142101. [16]ZHU Y,SONG Q,LUO Y.Differentially Private Top-k Flows Estimation Mechanism in Network Traffic[J].IEEE Transactions on Network Science and Engineering,2023,11(3):2462-2472. [17]CORMODE G,MUTHUKRISHNAN S.An improved datastream summary:the count-min sketch and its applications[J].Journal of Algorithms,2005,55(1):58-75. [18]DIMITROPOULOS X,HURLEY P,KIND A.Probabilisticlossy counting:An efficient algorithm for finding heavy hitters[J].ACM SIGCOMM Computer Communication Review,2008,38(1):5-5. [19]MITZENMACHER M,STEINKE T,THALER J.Hierarchical heavy hitters with the space saving algorithm[C]//2012 Proceedings of the Fourteenth Workshop on Algorithm Engineering and Experiments (ALENEX).Society for Industrial and Applied Mathematics,2012:160-174. [20]ROY P,KHAN A,ALONSO G.Augmented sketch:Faster and more accurate stream processing[C]//Proceedings of the 2016 International Conference on Management of Data.2016:1449-1463. [21]ZHOU Y,YANG T,JIANG J,et al.Cold filter:A meta-framework for faster and more accurate stream processing[C]//Proceedings of the 2018 International Conference on Management of Data.2018:741-756. [22]YU X,XU H,YAO D,et al.CountMax:A lightweight and cooperative sketch measurement for software-defined networks[J].IEEE/ACM Transactions on Networking,2018,26(6):2774-2786. [23]LU J,CHEN H,ZHANG Z.LUSketch:A fast and precisesketch for top-k finding in data streams[C]//2022 International Conference on Computer Communications and Networks (ICCCN).IEEE,2022:1-10. [24]WANG C,LI X,ZENG J,et al.Prob-CS:A Probabilistic Cuckoo Sketch for Accurate Network Traffic Measurement[J].IEEE Internet of Things Journal,2024,11(22):36965-36978. [25]XIONG B,LIU Y,LIU R,et al.ActiveGuardian:An accurateand efficient algorithm for identifying active elephant flows in network traffic[J].Journal of Network and Computer Applications,2024,224:103853. [26]YANG T,ZHANG H,LI J,et al.HeavyKeeper:an accurate algorithm for finding Top-k elephant flows[J].IEEE/ACM Transactions on Networking,2019,27(5):1845-1858. [27]YANG T,GONG J,ZHANG H,et al.Heavyguardian:Separate and guard hot items in data streams[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:2584-2593. [28]JIA P,WANG P,ZHAO J,et al.Loglog filter:Filtering colditems within a large range over high speed data streams[C]//2021 IEEE 37th International Conference on Data Engineering (ICDE).IEEE,2021:804-815. [29]LI Y,WANG F,YU X,et al.Ladderfilter:Filtering infrequent items with small memory and time overhead[C]//Proceedings of the ACM on Management of Data.2023:1-21. |
|