计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 298-305.doi: 10.11896/jsjkx.241000004

• 计算机网络 • 上一篇    下一篇

基于深度学习的导频设计和信道估计联合优化

王安义, 李婼嫚, 李新宇, 李明珠   

  1. 西安科技大学通信与信息工程学院 西安 710600
  • 收稿日期:2024-10-08 修回日期:2024-12-18 出版日期:2025-11-15 发布日期:2025-11-06
  • 通讯作者: 李婼嫚(15706000809@163.com)
  • 作者简介:(wanganyi@xust.edu.com)
  • 基金资助:
    国家自然科学基金(62471384)

Joint Optimization of Pilot Design and Channel Estimation Based on Deep Learning

WANG Anyi, LI Ruoman, LI Xinyu, LI Mingzhu   

  1. College of Communication and Information Engineering,Xi'an University of Science and Technology,Xi'an 710600,China
  • Received:2024-10-08 Revised:2024-12-18 Online:2025-11-15 Published:2025-11-06
  • About author:WANG Anyi,born in 1968,professor,Ph.D supervisor.His main research interests include key technologies in broadband digital mobile communications,intelligent information processing technologies,and coal mine intelligence.
    LI Ruoman,born in 1999,master.Her main research interests include wireless communication and channel estimation.
  • Supported by:
    National Natural Science Foundation of China(62471384).

摘要: 随着移动通信技术不断创新与发展,对通信的可靠性和数据传输性能提出了更高要求。准确高效地获取信道状态信息(Channel State Information,CSI)是充分发挥无线通信系统各项技术潜能的关键前提。针对多输入多输出-正交频分复用(MIMO-OFDM)系统中导频开销大及信道估计准确性低的问题,设计了一种基于深度学习的导频设计和信道估计联合优化方案(AE-DRSN)。该方案首先利用Concrete自编码器来识别和选择具有最大信息量的导频位置,从而实现导频优化。然后,将优化后的导频位置输入深度残差收缩网络获取更精确的CSI,进一步完成信道的精确估计。实验结果表明,与传统的信道估计方法相比,基于AE-DRSN的联合优化方案在少量的导频开销下仍能实现高精度的信道估计,充分验证了该方案的有效性。

关键词: MIMO-OFDM, 导频设计, 信道估计, 自编码器, 深度残差收缩网络

Abstract: With the continuous innovation and development of mobile communication technology,higher requirements have emerged communication reliability and data transmission performance.Accurate and efficient acquisition of CSI is a key prerequisite for fully harnessing the technical potential of wireless communication systems.In response to the challenges of high pilot overhead and low channel estimation accuracy in MIMO-OFDM systems,a joint optimization scheme of pilot design and channel estimation based on Deep Learning(AE-DRSN) is designed.The scheme initially utilizes Concrete AE to identify and select the pilot positions with maximum information content to achieve pilot optimization.The optimized pilot positions are then input into the DRSN to achieve more accurate CSI and further complete the accurate estimation of the channel.Experimental results demonstrate that compared with traditional channel estimation methods,the joint optimization scheme based on AE-DRSN can still achieve high-precision channel estimation with minimal pilot overhead,fully verifying the effectiveness of the scheme.

Key words: MIMO-OFDM, Pilot design, Channel estimation, Autoencoder, Deep residual shrinkage network

中图分类号: 

  • TN929.5
[1]BJÖRNSONE,ELDAR Y C,LARSSON E G,et al.Twenty-five years of signal processing advances for multiantenna communications:From theory to mainstream technology[J].IEEE Signal Processing Magazine,2023,40(4):107-117.
[2]WANGX,HOU Y,SHEN X.Narrowband interference cancellation technology of OFDM system based on artificial neural network[C]//IEEE 3rd International Conference on Electronics Technology(ICET).IEEE,2020:675-678.
[3]WANG Y C,ZHOU P,HUANG J.Research status of channel estimation and signal detection techniques for orthogonal time frequency space modulation[J].Journal on Communications,2024,45(9):229-243.
[4]KARTHIKA J,THENMOZHI G,RAJKUMAR M.PAPR re-duction of MIMO-OFDM system with reduced computational complexity SLM scheme[J].Materials Today:Proceedings,2021,37:2563-2566.
[5]ZHONGC,LOU M T,GU C R,et al.Performance optimization and parameters estimation for MIMO-OFDM dual-functional communication -radar systems[J].Digital Communications and Networks,2023,11(2):387-400.
[6]MEI K,LIU J,ZHANG X,et al.A low complexity learning-based channel estimation for OFDM systems with online training[J].IEEE Transactions on Communications,2021,69(10):6722-6733.
[7]JEONW G,PAIK K H,CHO Y S.Two-dimensional MMSEchannel estimation for OFDM systems with transmitter diversity[C]//IEEE 54th Vehicular Technology Conference/ VTC Fall 2001.IEEE,2001:1682-1685.
[8]SCHAFHUBERD,RUPP M,MATZ G,et al.Adaptive identification and tracking of doubly selective fading channels for wireless MIMO-OFDM systems[C]//2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications-SPAWC 2003.IEEE,2003:417-421.
[9]GAOC,ZHAO M,ZHOU S,et al.Blind channel estimation algorithm for MIMO-OFDM systems[J].Electronics Letters,2003,39(19):1420-1422.
[10]BAEKM S,KIM M J,YOU Y H,et al.Semi-blind channel estimation and PAR reduction for MIMO-OFDM system with multiple antennas [J].IEEE Transactions on Broadcasting,2004,50(4):414-424.
[11]QIN Q,GUI L,GONG B,et al.Sparse channel estimation formassive MIMO-OFDM systems over time-varying channels[J].IEEE Access,2018,6:33740-33751.
[12]UWAECHIAA N,SUHAIMI N S M,MAHYUDDIN N M,et al.Beamspace channel estimation in wideband lens antenna array-based mmWave mMIMO-OFDM systems under beam squint[J].Physical Communication,2022,50:101512.
[13]JEYAR,AMUTHA B.Optimized semiblind sparse channel estimation algorithm for MU-MIMO OFDM system[J].Computer Communications,2019,146:103-109.
[14]MEENALAKSHMI M,CHATURVEDI S,DWIVEDI V K.Enhancing channel estimation accuracy in polar-coded MIMO-OFDM systems via CNN with 5G channel models[J].AEU-International Journal of Electronics and Communications,2024,173:155016.
[15]SING H H,BANSAL S.Channel estimation with ISFLA based pilot pattern optimization for MIMO OFDM system[J].AEU-International Journal of Electronics and Communications,2017,81:143-149.
[16]ZHOUY C,HE X Y,LIANG Y.Pilot Design Schemes for Compressed Sensing-Based MIMO-OFDM Channel Estimation[J].Journal of Data Acquisition and Processing,2019,34(4):673-681.
[17]DHANASEKARAN S,RAMALINGAM S,KARTHICK P V,et al.An improved pilot pattern design-based channel estimation in wireless communication using distribution ant colony optimization[J].Simulation Modelling Practice and Theory,2023,129:102820.
[18]LI T,ZHOU F,MA L,et al.Non-orthogonal pilot pattern design and sparse channel estimation for underwater acoustic MIMO-OFDM systems[J].Applied Acoustics,2024,220:109933.
[19]BALIN M F,ABID A,ZOU J.Concrete autoencoders:Differentiable feature selection and reconstruction[C]//International Conference on Machine Learning.PMLR,2019:444-453.
[20]MADDISONC J,MNIH A,TEH Y W.The concrete distribution:A continuous relaxation of discrete random variables[J].arXiv:1611.00712,2016.
[21]HEK M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2016:770-778.
[22]ZHAO M,ZHONG S,FU X,et al.Deep residual shrinkage networks for fault diagnosis[J].IEEE Transactions on Industrial Informatics,2019,16(7):4681-4690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!