计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240700124-8.doi: 10.11896/jsjkx.240700124
尹文萃, 谢平, 叶成绪, 韩佳新, 夏星
YIN Wencui, XIE Ping, YE Chengxu, HAN Jiaxin, XIA Xing
摘要: 多变量时序数据异常检测指识别多变量时序数据中的异常值。为解决多变量时序数据间的复杂性和内部变量间特征依赖的问题,文中提出了一种基于变分图自编码器的多变量时序数据异常检测方法。首先,使用滑动窗口提取变量嵌入特征,并基于特征相似性构建结构关联关系图,然后将该多变量时序数据间的关联关系通过变分图自编码器进行优化,提高多变量时序数据的结构特征表征能力;其次,通过多头注意力机制提升多变量时序数据不同通道间的特征表示,并和多变量时序数据结构信息进行融合;最后,采用极值理论选取阈值并进行无监督异常检测。实验结果表明,所提模型在SWaT,MSL等数据集上F1分数达到了81.43%和99.67%的结果。
中图分类号:
[1]NING W Y.Research on multivariate time series anomaly detection methods [D].Nanchang:East China Jiaotong University,2023. [2]PANG G,SHEN C,CAN L,et al.Deep learning for anomaly de-tection:A review[J].ACM Computing Surveys(CSUR),2021,54(2):1-38. [3]YANG C C,YAN X H,CHEN R J,et al.Time Series Anomaly Detection Model with Dual Attention Mechanism [J].Journal of Computer Science and Exploration,2024,18(3):740-754. [4]YIN R G,WEI S,LI H,et al.Introduction of UnsupervisedLearning Methods in Deep Learning [J].Applications of Computer Systems,2016,25(8):1-7. [5]ZHOU Y,ZHU W H,FANG Q,et al.Survey of Outlier Detection Methods Based on Clustering [J].Computer Engineering and Applications,2019,57(12):37-45. [6]JI Q,SUN Y F,HU Y L,et al.Review of Clustering With Deep Learning.Journal of Beijing University of Technology,2021,47(8):912-924. [7]董洪荣,付亚军,张帅,等.基于欧式距离聚类的自适应过采样方法[J].印刷与数字媒体技术研究,2023(5):26-41. [8]AHMAD H,KASASBEH B,ALDABAYBAH B,et al.Classbalancing framework for credit card fraud detection based on clustering and similarity-based selection(SBS)[J].International Journal of Information Technology,2023,15(1):325-333. [9]DONG H R,FU Y J,ZHANG S,et al.Review of anomaly detection algorithms for multidimensional time series [J].Print and Digital Media Technology Research,2023(5):26-41. [10]WANG S H.Research on Anomaly Detection Method of Multivariate Time Series Based on Deep Learning [D].Harbin:Harbin Engineering University,2021. [11]LAI J,WANG X D,FORWARD,et al.Review on autoencoder and its application [J].Journal of Communications,2021,42(9):218-230. [12]KIPF,THOMAS N,WELLING.Variational graph auto-en-coders[C]//NIPS Workshop on Bayesian Deep Learning.Barcelona,Spain,2016:1-3. [13]ZHENG Y J.Research on Time Series Anomaly DetectionBased on Deep Learning[D].Beijing:Beijing University of Civil Engineering and Architecture,2021. [14]LI D,CHEN D,JIN B,et al.MAD-GAN:Multivariate anomalydetection for time series data with generative adversarial networks[C]//International Conference on Artificial Neural Networks.Cham:Springer International Publishing,2019:703-716. [15]SU Y,ZHAO Y,NIU C,et al.Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.Anchorage,AK,USA,2019:2828-2837. [16]AUDIBERT J,MICHIARDI P,GUYARD F,et al.Usad:Unsupervised anomaly detection on multivariate time series[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York,United States,2020:3395-3404. [17]CHEN W,TIAN L,CHEN B,et al.Deep variational graph convolutional recurrent network for multivariate time series anomaly detection[C]//International Conference on Machine Lear-ning.Baltimore,Maryland,USA,2022:3621-3633. [18]LIU Y,JIN M,PAN S,et al.Graph self-supervised learning:A survey[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(6):5879-5900. [19]DENG A,HOOI B.Graph neural network-based anomaly detection in multivariate time series[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Vancouver,Canada,2021,35(5):4027-4035. [20]ZHOU J,CUI G,HU S,et al.Graph neural networks:A review of methods and applications[J].AI open,2020,1:57-81. [21]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[C]//6th International Conference on Lear-ning Representation.Vancouver,BC,Canada,2018:1-12. [22]XIE Y,XU Z,ZHANG J,et al.Self-supervised learning of graph neural networks:A unified review[J].IEEE transactions on pattern analysis and machine intelligence,2022,45(2):2412-2429. [23]LI Z ,JIN X L,ZHUANG C Z,et al.Overview on Graph Based Anomaly Detection [J].Journal of Software,2020,32(1):167-193. [24]YAN S H,CHEN Z D.GAE-based Unsupervised Anomaly Detection of Multivariable Time Series [J].Applications of Computer Systems,2023,32(5):308-315. [25]ZHANG Y,LU M M,ZHENG Y J,et al.Student Grade Prediction Based on Graph Auto-Encoder Model [J].Computer Engineering and Applications,2019,57(13):251-257. [26]CHEN X,GÜTTEL S.Fast and exact fixed-radius neighborsearch based on sorting[J].PeerJ Computer Science,2024,10:1-17. [27]ZHANG S,TONG H,XU J,et al.Graph convolutional net-works:a comprehensive review[J].Computational Social Networks,2019,6(1):1-23. [28]LI Z,LI C,XU Z,et al.Frequency analysis of precipitation extremes in Heihe River basin based on generalized Pareto distribution[J].Stochastic environmental research and risk assessment,2014,28:1709-1721. [29]MATHUR A P,TIPPENHAUER N O.SWaT:A water treatment testbed for research and training on ICS security[C]//International Workshop on Cyber-physical Systems for Smart Water Networks(CySWater).Vienna,Austria,2016:31-36. [30]TULI S,CASALE G,JENNINGS N R.Tranad:Deep trans-former networks for anomaly detection in multivariate time series data[J].arXiv:2201.07284,2022. [31]CEMGIL T,GHAISAS S,DVIJOTHAM K,et al.The autoencoding variational autoencoder[J].Advances in Neural Information Processing Systems,2020,33:15077-15087. |
|