计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 415-424.doi: 10.11896/jsjkx.241100101

• 信息安全 • 上一篇    下一篇

基于加性秘密共享的轻量级隐私保护移动传感分类框架

何宇宇1,2,3, 周凤1, 田有亮3,4, 熊伟1, 王帅1,2,3   

  1. 1 贵州大学计算机科学与技术学院公共大数据国家重点实验室 贵阳 550025
    2 贵州省密码学与区块链技术特色重点实验室 贵阳 550025
    3 贵州大学密码学与数据安全研究所 贵阳 550025
    4 贵州大学大数据与信息工程学院 贵阳 550025
  • 收稿日期:2024-11-18 修回日期:2025-02-21 出版日期:2025-11-15 发布日期:2025-11-06
  • 通讯作者: 周凤(41544782@qq.com)
  • 作者简介:(heyuyu97@163.com)
  • 基金资助:
    国家重点研发计划(2021YFB3101100);国家自然科学基金(62272123);贵州省高层次创新型人才项目(黔科合平台人才[2020]6008);贵州省科技计划项目(黔科合平台人才[2020]5017,黔科合支撑[2022]一般065,黔科合战略找矿[2022]ZD001);贵阳市科技计划项目(筑科合[2022]2-4)

Lightweight Privacy-preserving Mobile Sensing Classification Framework Based on AddictiveSecret Sharing

HE Yuyu1,2,3, ZHOU Feng1, TIAN Youliang3,4, XIONG Wei1, WANG Shuai1,2,3   

  1. 1 State Key Laboratory of Public Big Data,College of Computer Science and Technology,Guizhou University,Guiyang 550025,China
    2 Guizhou Provincial Key Laboratory of Cryptography and Blockchain Technology,Guiyang 550025,China
    3 Institute of Cryptography & Data Security,Guizhou University,Guiyang 550025,China
    4 College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China
  • Received:2024-11-18 Revised:2025-02-21 Online:2025-11-15 Published:2025-11-06
  • About author:HE Yuyu,born in 2000,postgraduate.His main research interests include privacy-preserving machine learning and secure multi-party computation.
    ZHOU Feng,born in1976,postgra-duate,associate professor,postgraduate supervisor.Her main research interests include big data security and privacy protection.
  • Supported by:
    National Key R&D Program of China(2021YFB3101100),National Natural Science Foundation of China(62272123),Project of High-level Innovative Talents of Guizhou Province([2020]6008),Science and Technology Program of Guizhou Province([2020]5017,[2022]065,[2022]ZD001) and Science and Technology Program of Guiyang([2022]2-4).

摘要: 针对在移动传感设备上部署卷积神经网络模型出现的数据隐私泄露问题,以及隐私保护目标分类框架中服务器交互计算导致通信开销过高的挑战,提出了一种基于加性秘密共享的轻量级隐私保护移动传感目标分类框架(LPMS)。该框架确保移动传感设备在交换数据时不会泄露隐私信息,同时显著降低通信开销和计算开销。首先,利用加性秘密共享技术构建了一系列不依赖计算密集型密码原语的安全计算协议,以实现安全高效的神经网络计算;其次,构建了一种三维混沌加密方案,防止原始数据在上传至边缘服务器的过程中被攻击者窃取;最后,通过理论分析与安全性证明,验证了LPMS框架的正确性及安全性。实验结果表明,与PPFE方案相比,LPMS方案将模型计算开销降低了73.33%,通信开销减少了68.36%。

关键词: 移动传感设备, 卷积神经网络, 隐私保护, 加性秘密共享, 混沌加密

Abstract: To address data privacy leakage in deploying convolutional neural network models on mobile sensing devices,as well as the challenge of excessive communication overhead caused by server interaction computations in privacy-preserving target classification frameworks,a lightweight privacy-preserving mobile sensing object classification framework(LPMS) based on additive secret sharing is proposed.This framework ensures that mobile sensing devices maintain data confidentiality during data exchanges while significantly reducing both communication and computational overhead.Firstly,a series of secure computing protocols are developed using additive secret sharing technology,avoiding reliance on computationally intensive cryptographic primitives to facilitate efficient and secure neural network computations.Secondly,a three-dimensional chaotic encryption scheme is introduced to protect original data from potential attackers during uploads to the edge server.Finally,the correctness and security of the LPMS framework are validated through theoretical analysis and security proofs.Experimental results demonstrate that,compared to the PPFE scheme,the LPMS framework reduces model computation overhead by 73.33% and communication overhead by 68.36%.

Key words: Mobile sensing devices, Convolutional neural networks, Privacy-preserving, Additive secret sharing, Chaotic encryption

中图分类号: 

  • TP309.2
[1]LIM W Y B,LUONG N C,HOANG D T,et al.Federated lear-ning in mobile edge networks:A comprehensive survey[J].IEEE Communications Surveys Tutorials,2020,22(3):2031-2063.
[2]BISWAS A,WANG H C.Autonomous vehicles enabled by the integration of IoT,edge intelligence,5G,and blockchain[J].Sensors,2023,23(4):1963.
[3]WANG Z Y,XIONG H Y,ZHANG J,et al.From personalized medicine to population health:a survey of mHealth sensing techniques[J].IEEE Internet of Things Journal,2022,9(17):15413-15434.
[4]ZHANG Y M,CHEN Y M,BAI X,et al.Adaptive unimodalcost volume filtering for deep stereo matching[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:12926-12934.
[5]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014.
[6]LIU B,DING M,SHAHAM S,et al.When machine learningmeets privacy:A survey and outlook[J].ACM Computing Surveys,2021,54(2):1-36.
[7]LI W D,OU J W.Machine scheduling with restricted rejection:An Application to task offloading in cloud-edge collaborative computing[J].European Journal of Operational Research,2024,314(3):912-919.
[8]GUPTA S,CAMMAROTA R,ŠIMUNIĆ T.Memfhe:End-to-end computing with fully homomorphic encryption in memory[J].ACM Transactions on Embedded Computing Systems,2024,23(2):1-23.
[9]ZHANG J W,KANG X,LIU Y,et al.A secure and lightweight multi-party private intersection-sum scheme over a symmetric cryptosystem[J].Symmetry,2023,15(2):319.
[10]GILAD-BACHRACH R,DOWLIN N,LAINE K,et al.Cryptonets:Applying neural networks to encrypted data with high throughput and accuracy[C]//International Conference on Machine Learning.PMLR,2016:201-210.
[11]MOHASSEL P,RINDAL P.ABY3:A mixed protocol framework for machine learning[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security.2018:35-52.
[12]RATHEE D,RATHEE M,KUMAR N,et al.Cryptflow2:Practical 2-party secure inference[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security.2020:325-342.
[13]DITTMER S,ISHAI Y,LU S,et al.Authenticated garblingfrom simple correlations[C]//Annual International Cryptology Conference.Cham:Springer,2022:57-87.
[14]BORGES R,SEBÉ F.An e-Coin Based Construction for Unlinkable Priced Oblivious Transfer[J].The Computer Journal,2023,67(3):933-940.
[15]XIONG J B,BI R W,ZHAO M F,et al.Edge-assisted privacy-preserving raw data sharing framework for connected autonomous vehicles[J].IEEE Wireless Communications,2020,27(3):24-30.
[16]HUANG K,LIU X M,FU S J,et al.A lightweight privacy-preserving CNN feature extraction framework for mobile sensing[J].IEEE Transactions on Dependable and Secure Computing,2021,18(3):1441-1455.
[17]YANG X,CHEN J,HE K,et al.Efficient privacy-preserving inference outsourcing for convolutional neural networks[J].IEEE Transactions on Information Forensics and Security,2023,18:4815-4829.
[18]PENG Y X,SUN K H,HE S B.A discrete memristor model and its application in Hénon map[J].Chaos,Solitons & Fractals,2020,137:109873.
[19]ZHENG Y Z,LI L,QIAN L,et al.Sine-SSA-BP ship trajectory prediction based on chaotic mapping improved sparrow search algorithm[J].Sensors,2023,23(2):704.
[20]BOGDANOV D,NIITSOO M,TOFT T,et al.High-perfor-mance secure multi-party computation for data mining applications[J].International Journal of Information Security,2012,11:403-418.
[21]ARAKI T,FURUKAWA J,LINDELL Y,et al.High-throughput semi-honest secure three-party computation with an honest majority[C]//Proceedings of the 2016 ACM SIGSAC Confe-rence on Computer and Communications Security.2016:805-817.
[22]QIN Z,YAN J B,REN K,et al.Towards efficient privacy-preserving image feature extraction in cloud computing[C]//Proceedings of the 22nd ACM International Conference on Multimedia.2014:497-506.
[23]WANG J J,HU S S,WANG Q,et al.Privacy-preserving outsourced feature extractions in the cloud:A survey[J].IEEE Network,2017,31(5):36-41.
[24]BEAVER D.Efficient multiparty protocols using circuit ran-domization[C]//Advances in Cryptology(CRYPTO'91).Berlin:Springer,1992:420-432.
[25]XIONG J B,BI R W,TIAN Y L,et al.Toward lightweight,privacy-preserving cooperative object classification for connected autonomous vehicles[J].IEEE Internet of Things Journal,2021,9(4):2787-2801.
[26]BOGDANOV D,LAUR S,WILLEMSON J.Sharemind:Aframework for fast privacy-preserving computations[C]//Computer Security-ESORICS 2008:13th European Symposium on Research in Computer Security.Berlin:Springer,2008:192-206.
[27]GEIGER A,LENZ P,STILLER C,et al.Vision meets robotics:The kitti dataset[J].The International Journal of Robotics Research,2013,32(11):1231-1237.
[28]LIU J,JUUTI M,LU Y,et al.Oblivious neural network predictions via minionn transformations[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.2017:619-631.
[29]LI S H,XUE K P,ZHU B,et al.Falcon:A fourier transformbased approach for fast and secure convolutional neural network predictions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:8705-8714.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!