计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250100047-7.doi: 10.11896/jsjkx.250100047
文明1, 吴兴堂2, 尚宇豪2, 甄键3, 于富才1
WEN Ming1, WU Xingtang2, SHANG Yuhao2, ZHEN Jian3, YU Fucai1
摘要: 为保障公路工程施工人员作业安全,减少施工安全事故,实时检测施工人员是否佩戴安全帽已成为重要的安全监管手段。公路工程施工具有点多、线长、面广的特点,且面临穿山越岭、跨江跨河等复杂地势,传统固定摄像头的覆盖存在局限性,且成本较高。无人机作为一种灵活、低成本且具备高可视性的影像采集工具,能够有效弥补这一不足,特别适用于传统手段难以覆盖的施工现场高风险区域。针对基于无人机采集图像的安全帽检测,在光照变化、目标尺度和形状变化较大的情况下容易出现误检、漏检的问题,提出了一种基于改进扩展差分高斯(XDOG)的YOLOv5安全帽实时检测算法。针对复杂施工环境中安全帽与背景或其他物体难以区分的问题,XDOG模块通过提取图像的边缘信息,增强了待检测安全帽的结构与细节特征。随后,差分高斯结果通过归一化和非线性激活处理,消除了环境中的亮度变化和噪声干扰。为了与YOLOv5网络兼容,采用1×1卷积层调整增强后的特征图通道数,并通过残差连接与原始图像特征进行融合,从而提高了网络的鲁棒性和准确性。实验结果表明,相较于传统的YOLOv5和YOLOx等模型,XDOG-YOLOv5在mAP@50和mAP@50-95等指标上均有显著提升,显著提高了施工作业人员安全帽检测的精度。
中图分类号:
| [1]YANG Y,PEI Z Z,CHEN Z,et al.Study on freeway traffic safety evaluation based on improved system engineering decision theory[J].Journal of Beijing Jiaotong University,2022,46(3):34-48. [2]FENG P,QIAN Y R,FAN Y Y,et al.Safety helmet detection al-gorithm based on the improved Cascade R-CNN[J].Microelectronics & Computer,2024,41(1):63-73. [3]GUO W,FAN Y G,LI X Z,et al.Detection of Nonstandard Wearing of Safety Helmet Based on Improved YOLO[J].Ordnance Industry Automation,2024,43(5):33-36,42. [4]WANG Z B,MA H,FENG J L,et al.Helmet Detection Algorithm Based on CE-YOLOv5s[J].Computer and Modernization,2024(4):55-59,98. [5]ZHANG G P,ZHOU J Z,MA G C,et al.Lightweight safety helmet wearing detection algorithm of improved YOLOv8[J].Electronic Measurement Technology,2024,47(17):147-154. [6]LI Z S,XIE W Q,ZHANG L Z,et al.TowardEfficient Safety Helmet Detection Based on YoloV5 With Hierarchical Positive Sample Selection and Box Density Filtering[J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-14. [7]WAN J C,LIANG B C.Design and Implementation of an Intelligent Motorcycle Helmet for Large Vehicle Approach Intimation[J].IEEE Sensors Journal,2019,19(10):3882-3892. [8]PATEL K,PATEL V,PRAJAPATI V,et al.Safety Helmet De-tection Using YOLO V8[C]//2023 3rd International Confe-rence on Pervasive Computing and Social Networking(ICPCSN).2023:22-26. [9]ZHAO L,ZHANG D,LIU Y,et al.Improved YOLOv5s Network for Multi-scale safety Helmet Detection [C]//2022 11th International Conference on Communications,Circuits and Systems(ICCCAS).2022:262-266. [10]WANG B,XIONG H,LIU L.Safety helmet wearing recognition based on improved YOLOv4 algorithm[C]//2022 IEEE 6th Information Technology and Mechatronics Engineering Conference(ITOEC).2022:1732-1736. [11]AI X,CHEN C,WANG Y.Multi-Scene Safety Helmet Detection with Multi-Scale Spatial Attention Feature[C]//2021 7th IEEE International Conference on Network Intelligence and Di-gital Content(IC-NIDC).2021:21-25. [12]CHEN L,MAO Y,ZHANG H.Improved the Detection Algo-rithm of Safety Helmet Wearing Based on YOLOv8[C]//2023 3rd International Conference on Electronic Information Engineering and Computer Communication(EIECC).2023:1-4. [13]QU H,LOU S,WANG X.Safety Helmet Wearing Detection Algorithm Based on Improved Yolov5s[C]//2023 5th International Conference on Artificial Intelligence and Computer Applications(ICAICA).2023:37-40. [14]NING S,HAN X.An improved YOLOv8-based safety helmetwearing detection algorithm[C]//2024 7th International Conference on Computer Information Science and Application Technology(CISAT).2024:75-79. [15]XU K,LI X Z,ZHANG L,et al.Safety Helmet Wearing Detection Algorithm for Distribution Network Construction in Natural Scenarios[J].Computer Engineering and Applications,2024,60(8):320-328. [16]ZHENG C W,LIN H.YOLOv5 Helmet Wearing DetectionMethod Based on Swin Transformer[J].Computer Measurement & Control,2023,31(3):15-21. [17]DU Q,YANG S J,GUO Q P.Intelligent detection method of working personnel wearing safety helmets in underground mine[J].Journal of Mine Automation,2023,49(7):134-140. [18]LI Z F,FENG S Y,GUO J,et al.Lightweight safety helmet wearing detection fusing coordinate attention and multiscale feature[J].Journal of Mine Automation,2023,49(11):151-159. |
|
||